Process Parameter Optimisation for Minimum Leakage Current in a 22nm p-type MOSFET using Taguchi Method

Authors

  • Afifah Maheran A. H. Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronic & Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Menon P. S. Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
  • I. Ahmad Centre for Micro and Nano Engineering(CeMNE), College of Engineering, Universiti Tenaga Nasional (UNITEN), 43009 Kajang, Selangor, Malaysia
  • F. Salehuddin Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronic & Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • A. S. Mohd Zain Centre for Telecommunication Research & Innovation (CeTRI), Faculty of Electronic & Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

Keywords:

Taguchi Method, 22 nm p-Type MOSFET Technology, Leakage Current,

Abstract

In this research paper, the effects of variation on the process parameters were optimised while designing a nano-scaled p-type MOSFET (metal-oxide-semiconductor field-effect transistor) planar device for 22 nm technology. The aim of this procedure is to meet the minimum leakage current (IOFF) by optimising the process parameters as leakage current. It is one of the characteristics that must be taken into account for device functionality. The gate structure of the device consists of Titanium dioxide (TiO2) that functions as the high permittivity material (high-k) dielectric and Tungsten silicide (WSix) metal gate, where it is deposited on top of the TiO2 high-k layer. The fabrication process was designed using an industrial-based numerical simulator. This simulator was then aided in design with the L9 Taguchi’s orthogonal array method to optimise the process parameters to achieve the best combination of the process parameters with the lowest leakage current. The objective is to obtain IOFF values using Smaller-the-Better (STB) signal-to-noise ratio (SNR). The results of the factor effect on the SNR clearly shows that the Halo implantation tilting angle has the greatest influence with 52.47% in minimising the leakage current of the device where the implantation tilting angle is 35°. It is followed by the Halo implantation dose with 34.23% effect, gate oxide growth annealing temperature was ranked third at 12.29% effect and metal gate annealing temperature has the least influence with 1.01%. The final results in characterising and modelling the process parameters of the 22nm PMOS device technology with reference to the prediction by the International Technology Roadmap for Semiconductors (ITRS) succeeded, where the result of the IOFF value was lower than the predicted value which is less than 100 nA/µm.

References

K. Roy, J. P. Kulkarni, and S. K. Gupta, “Device/circuit interactions at 22nm technology node,” in IEEE Design Automation Conference (DAC ’09), 2009, pp. 97–102.

H.-J. Cho, K.-I. Seo, W. C. Jeong, Y.-H. Kim, Y. D. Lim, W. W. Jang, J. G. Hong, S. D. Suk, M. Li, C. Ryou, H. S. Rhee, J. G. Lee, H. S. Kang, Y. S. Son, C. L. Cheng, S. H. Hong, W. S. Yang, S. W. Nam, J. H. Ahm, D. H. Lee, S. Park, M. Sadaaki, D. H. Cha, D. W. Kim, S. P. Sim, S. Hyun, C. G. Koh, B. C. Lee, S. G. Lee, M. C. Kim, Y. K. Bae, B. Yoon,

S. B. Kang, J. S. Hong, S. Choi, D. K. Sohn, J. S. Yoon, and C. Chung,

“Bulk planar 20nm high-k/metal gate CMOS technology platform for low power and high performance applications,” Int. Electron Devices Meet., no. V, pp. 15.1.1–15.1.4, Dec. 2011.

J. W. Sleight, I. Lauer, O. Dokumaci, D. M. Fried, D. Guo, B. Haran, S. Narasimha, C. Sheraw, D. Singh, M. Steigerwalt, X. Wang, P. Oldiges, D. Sadana, C. Y. Sung, W. Haensch, and M. Khare, “Challenges and opportunities for high performance 32 nm CMOS technology,” IEEE Int. Electron Devices Meet., pp. 1–4, 2006.

K. J. Kuhn, “CMOS transistor scaling past 32nm and implications on variation,” in IEEE Advanced Semiconductor Manufacturing Conference, 2010, pp. 241–246.

K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W. Shih, S. Sivakumar, G. Taylor, P. VanDerVoorn, and K. Zawadzki, “Managing

process variation in Intel’s 45nm CMOS technology,” Intel Technol. J., vol. 12, no. 2, pp. 93–109, 2008.

S. Mukhopadhyay and K. Roy, “Modeling and estimation of total leakage current in nano-scaled-CMOS devices considering the effect of parameter variation,” Int. Symp. Low Power Electron. Des., no. 1, pp. 172–175, 2003.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, and S. Shaari, “Effect of Halo structure variations on the threshold voltage of a 22nm gate length NMOS transistor,” Mater. Sci. Semicond. Process., vol. 17, pp. 155–161, Jan. 2014.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, and S. Shaari, “Optimisation of Process Parameters for Lower Leakage Current in 22 nm n-type MOSFET Device using Taguchi Method,” J. Teknol. (Sciences Eng., vol. 4, pp. 45–49, 2014.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, S. Shaari, H. A. Elgomati, and F. Salehuddin, “Design and Optimization of 22 nm Gate Length High-k/Metal gate NMOS Transistor,” J. Phys. Conf. Ser., vol. 431, pp. 1–9, Apr. 2013.

H. A. Elgomati, B. Y. Majlis, A. M. Abdul Hamid, P. S. Menon, and I. Ahmad, “Modelling of process parameters for 32nm PMOS transistor using Taguchi method,” Asia Model. Symp., pp. 40–45, May 2012.

ITRS, “ITRS Report,” www.ITRS2012.net, 2012. .

S. I. Amin and M. S. Alam, “Virtual fabrication and analog performance of sub-40nm bulk MOSFET using TCAD Tool,” Int. J. Comput. Sci. Informatics, vol. 1, no. 1, pp. 39–44, 2011.

M. Salmani-Jelodar, H. Ilatikhameneh, S. Kim, K. Ng, and G. Klimeck, “Optimum High-k Oxide for the Best Performance of Ultra-scaled Double-Gate MOSFETs,” vol. 13, no. February, pp. 1–5, 2015.

J. Widiez, M. Vinet, B. Guillaumot, T. Poiroux, D. Lafond, P. Holliger, V. Barral, B. Previtali, F. Martin, M. Mouis, S. Deleonibus, C. E. A. Drt-leti, and M. Grenoble, “Fully depleted SOI MOSFETs with WSix , metal gate on HfO2 gate dielectric,” IEEE Int. SOI Conf. Proc., pp. 177–178, 2006.

M. S. Phadke, Quality engineering using robust design. Pearson Education Inc. And Dorling Kindersley Publishing Inc. India., 2008.

K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deepsubmicrometer CMOS circuits,” Proc. IEEE, vol. 91, no. 2, pp. 305–327, 2003.

A. Erlebach, T. Feudel, A. Schenk, and C. Zechner, “Influence of HALO and drain-extension doping gradients on transistor performance,” Mater. Sci. Eng. B, vol. 114–115, pp. 15–19, Dec. 2004.

Z. A. N. Faizah, I. Ahmad, P. J. Ker, P. S. A. Roslan, and A. H. A. Maheran, “Modeling of 14 nm gate length n-Type MOSFET,” RSM 2015 - 2015 IEEE Reg. Symp. Micro Nano Electron. Proc., pp. 2–5, 2015.

Downloads

Published

2016-12-01

How to Cite

A. H., A. M., P. S., M., Ahmad, I., Salehuddin, F., & Mohd Zain, A. S. (2016). Process Parameter Optimisation for Minimum Leakage Current in a 22nm p-type MOSFET using Taguchi Method. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(9), 19–23. Retrieved from https://jtec.utem.edu.my/jtec/article/view/796

Most read articles by the same author(s)

1 2 3 > >>