Control Factors Optimization on Threshold Voltage and Leakage Current in 22 nm NMOS Transistor Using Taguchi Method

Authors

  • Afifah Maheran A.H. CeTRI, Faculty of Electronics & Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka.
  • Menon P.S. IMEN, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor.
  • I. Ahmad CeMNE, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43009 Kajang, Selangor.
  • F. Salehuddin CeTRI, Faculty of Electronics & Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka.
  • A.S. Mohd Zain CeTRI, Faculty of Electronics & Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka.
  • Noor Faizah Z. A. CeMNE, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43009 Kajang, Selangor.
  • H.A. Elgomati IMEN, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor. Faculty of Engineering Technology, 34000 Janzour, Libya.

Keywords:

22 Nm NMOS Tio2/Wsix, High-K/Metal Gate, Threshold Voltage, Leakage Current, Taguchi Method,

Abstract

In this article, Taguchi method was used to optimize the control factor in obtaining the optimal value which is also known as response characteristics, where the threshold voltage (Vth) and leakage current (Ileak) for NMOS transistor with a gate length of 22 nm is taken into account. The NMOS transistor design includes a high permittivity material (high-k) as a dielectric layer and a metal gate which is Titanium Dioxide (TiO2) and Tungsten Silicide (WSiX) respectively. The control factor was optimized in designing the NMOS device using the Taguchi Orthogonal Array Method where the Signal-to-Noise Ratio (SNR) analysis uses the Nominal-the-Best (NTB) SNR for Vth, while for Ileak analysis, a Smaller-the-Better (STB) SNR was used. Four manufacturing control factors and two noise factor are used to optimize the response characteristics and find the best combination of design parameters. The results show that the Halo implantation tilting angle is the dominant factor where it has the greatest factor effect on the SNR of the Ileak with 55.52%. It is also shown that the values of Vth have the least variance and the mean value can be set to 0.289 V ± 12.7% and Ileak is less than 100 nA/µm which is in line with the projections made by the International Technology Roadmap for Semiconductors (ITRS).

References

M. Salmani-Jelodar, H. Ilatikhameneh, S. Kim, K. Ng, and G. Klimeck, “Optimum High-k Oxide for the Best Performance of Ultra-scaled Double-Gate MOSFETs,” IEEE Trans. Nanotechnol., vol. 13, pp. 1–5, 2015.

H. Wong and H. Iwai, “On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology,” Microelectron. Eng., vol. 138, pp. 57–76, Apr. 2015.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, and S. Shaari, “Application of Taguchi Method in Designing a 22nm High-k/Metal Gate NMOS Transistor,” Adv. Mater. Res., vol. 925, pp. 514–518, 2014.

N. Mohammad, F. Salehuddin, H. A. Elgomati, I. Ahmad, N. A. A. Rahman, M. Mansor, Z. Mansor, K. E. Kaharudin, A. S. M. Zain, and N. Z. Haron, “Characterization & Optimization of 32nm P-Channel MOSFET Device,” J. Telecommun. Electron. Comput. Eng., vol. 5, no. 2, pp. 49–54, 2013.

H. A. Elgomati, B. Y. Majlis, F. Salehuddin, I. Ahmad, and A. Zaharim, “Optimizing 35nm NMOS devices Vth and Ileak by controlling active area and Halo implantation dosage,” in IEEE Regional Symposium on Micro and Nano Electronics (RSM2011), 2011, pp. 286–290.

N. F. Z. A, I. Ahmad, P. J. Ker, S. M. Y, M. F. R, S. K. Mah, and P. S. Menon, “Process Parameters Optimization of 14nm p-Type MOSFET using 2-D Analytical Modeling,” J. Telecommun. Electron. Comput. Eng., vol. 8, no. 4, pp. 97–100, 2013.

F. Salehuddin, I. Ahmad, F. A. Hamid, and A. Zaharim, “Impact of different dose and angle in HALO structure for 45nm NMOS device,” Adv. Mater. Res., vol. 383–390, pp. 6827–6833, Nov. 2012.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, and S. Shaari, “Effect of Halo structure variations on the threshold voltage of a 22nm gate length NMOS transistor,” Mater. Sci. Semicond. Process., vol. 17, pp. 155–161, Jan. 2014.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, F. Salehuddin, and A. S. M. Zain, “Process Parameter Optimisation for Minimum Leakage Current in a 22nm p-type MOSFET using Taguchi Method,” J. Telecommun. Electron. Comput. Eng., vol. 8, no. 9, pp. 19–23, 2016.

ITRS, “ITRS Report,” www.ITRS2012.net, 2012. .

M. S. Phadke, Quality engineering using robust design. Pearson Education Inc. And Dorling Kindersley Publishing Inc. India., 2008.

S. Ghosh, P. Sahoo, and Goutam Sutradhar, “Friction performance of Al-10%SiCp reinforce metal matrix composite using Taguchi method,” ISRN Tribol., vol. 2013, pp. 1–9, 2013.

A. Khakifirooz and D. A. Antoniadis, “MOSFET performance scaling - Part II: Future directions,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1401–1408, 2008.

T. Baldauf, A. Wei, R. Illgen, S. Flachowsky, T. Herrmann, T. Feudel, Ho, x, J. Ntschel, M. Horstmann, W. Klix, and R. Stenzel, “Simulation and optimization of Tri-gates in a 22 nm hybrid Tri-gate/planar process,” in 12th International Conference on Ultimate Integration on Silicon, 2011, pp. 1–4.

Downloads

Published

2017-09-01

How to Cite

A.H., A. M., P.S., M., Ahmad, I., Salehuddin, F., Mohd Zain, A., Z. A., N. F., & Elgomati, H. (2017). Control Factors Optimization on Threshold Voltage and Leakage Current in 22 nm NMOS Transistor Using Taguchi Method. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-7), 137–141. Retrieved from https://jtec.utem.edu.my/jtec/article/view/2610

Most read articles by the same author(s)

1 2 3 > >>