Sliding Mode Observer Based Controller for Active Steering Control

Authors

  • A. S. M. Isira Advanced Sensors and Embedded Control System (ASECS). Center for Telecommunication Research and Innovation(CeTRI). Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer. Universiti Teknikal Malaysia Melaka. Durian Tunggal, 76100 Melaka Malaysia.
  • N. X. Yan Advanced Sensors and Embedded Control System (ASECS). Center for Telecommunication Research and Innovation(CeTRI). Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer. Universiti Teknikal Malaysia Melaka. Durian Tunggal, 76100 Melaka Malaysia.
  • M. M. Ibrahim Machine Learning and Signal Processing (MLSP). Center for Telecommunication Research and Innovation(CeTRI). Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer. Universiti Teknikal Malaysia Melaka. Durian Tunggal, 76100 Melaka Malaysia.
  • Shakir Saat Advanced Sensors and Embedded Control System (ASECS). Center for Telecommunication Research and Innovation(CeTRI). Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer. Universiti Teknikal Malaysia Melaka. Durian Tunggal, 76100 Melaka Malaysia.
  • A. M. Khafe Advanced Sensors and Embedded Control System (ASECS). Center for Telecommunication Research and Innovation(CeTRI). Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer. Universiti Teknikal Malaysia Melaka. Durian Tunggal, 76100 Melaka Malaysia.
  • A. M. Darsono Advanced Sensors and Embedded Control System (ASECS). Center for Telecommunication Research and Innovation(CeTRI). Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer. Universiti Teknikal Malaysia Melaka. Durian Tunggal, 76100 Melaka Malaysia.

Keywords:

Controller, Nonlinear System, Observer, Sliding Mode Control, Stability,

Abstract

The purpose of this paper is to enhance the performance of steering control of a vehicle. A nonlinear sliding mode observer based active steering controller that will overcome the disturbances such as road condition and crosswind is proposed. Condition of stability is given by using Lyapunov stability theory that relates to sliding mode characteristics. The controller proves that it is able to stabilize the steering wheel better when disturbances such as braking action and crosswind are included in the system. Lastly, simulations are given to prove the validity of the controller stability. In the simulations, comparisons are made between the outcome of the uncontrolled, Linear Quadratic Regulator (LQR), Sliding Mode Controller (SMC) and Sliding Mode Observer Based Controller (SMOC).

References

S. Yoo, S.-H. You, J. Jo, D. Kim, and K. I. Lee, “Optimal integration of active 4 wheel steering and direct yaw moment control,” IFAC Proceedings Volumes, vol. 39, no. 12, pp. 603 – 608, 2006.

B. Aksun-G¨uvenc, T. B¨unte, B. Odenthal, and G. L., “Robust two degree-of-freedom vehicle steering controller design,” IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 627– 636, 2004, lIDO-Berichtsjahr=2004.

P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive Active Steering Control for Autonomous Vehicle Systems,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 566–580, May 2007. [Online]. Available: http://dx.doi.org/10.1109/tcst.2007.894653

S. D. Cairano, H. Tseng, D. Bernardini, and A. Bemporad, “Steering vehicle control by switched model predictive control,” IFAC Proceedings Volumes, vol. 43, no. 7, pp. 1 – 6, 2010.

Y. Hirano and K. Fukatani, “Development of robust active rear steering control for automobile,” JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 40, no. 2, pp. 231–238, 1997.

M. Canale and L. Fagiano, “Stability control of 4ws vehicles using robust imc techniques,” Vehicle System Dynamics, vol. 46, no. 11, pp. 991–1011, 2008.

H. Jing, R. Wang, M. Chadli, C. Hu, F. Yan, and C. Li, “Faulttolerant control of four-wheel independently actuated electric vehicles with active steering systems,” IFAC-PapersOnLine, vol. 48, no. 21, pp. 1165 – 1172, 2015.

M. Canale, L. Fagiano, M. Milanese, and P. Borodani, “Robust vehicle yaw control using an active differential and imc techniques,” Control Engineering Practice, vol. 15, no. 8, pp. 923–941, 2007.

M. Canale, L. Fagiano, and V. Razza, “Approximate nmpc for vehicle stability: design, implementation and sil testing,” Control engineering practice, vol. 18, no. 6, pp. 630–639, 2010.

M. Nagai, M. Shino, and F. Gao, “Study on integrated control of active front steer angle and direct yaw moment,” JSAE review, vol. 23, no. 3, pp. 309–315, 2002.

V. Thakar, “On analysis of multi-rate output feedback based discrete sliding mode control using transform method,” in 2012 12th International Workshop on Variable Structure Systems, Jan 2012, pp. 303–307.

B. Sapiski, M. Ros, and . Jastrzbski, “Measurement-control system for an automotive vehicle engine mount,” in Proceedings of the 2015 16th International Carpathian Control Conference (ICCC), May 2015, pp. 448–451.

R. Marino and S. Scalzi, “Integrated active front steering and semiactive rear differential control in rear wheel drive vehicles,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10 732 – 10 737, 2008.

E. Ono and Y. Hattori, “Vehicle motion control device and control method,” Oct. 30 2012, uS Patent 8,301,353.

E. Mehrjerdian, A. Gaedke, R. Greul, and T. Bertram, “Efficiency of steering torque recommendation in limits of driving dynamics: an empirical study,” IFAC Proceedings Volumes, vol. 43, no. 7, pp. 650– 655, 2010.

A. Marar, D. Ginoya, S. B. Phadke, and P. D. Shendge, “Robust yaw stability control based on disturbance observer using active front steering,” in 2015 International Conference on Industrial Instrumentation and Control (ICIC), May 2015, pp. 1367–1372.

M. K. Aripin, R. Ghazali, Y. M. Sam, K. Danapalasingam, and M. F. Ismail, “Uncertainty modelling and high performance robust controller for active front steering control,” in 2015 10th Asian Control Conference (ASCC), May 2015, pp. 1–6.

C. Hu, R. Wang, F. Yan, and P. Chen, “Integral sliding mode yaw control for in-wheel-motor driven and differentially steered electric vehicles with mismatched disturbances,” in 2017 American Control Conference (ACC), May 2017, pp. 1654–1659.

N. M. Ghani, Y. M. Sam, and A. Ahmad, “Active steering for vehicle system using sliding mode control,” in 2006 4th Student Conference on Research and Development, June 2006, pp. 256– 261.

J. Ackermann and T. B¨unte, “Yaw disturbance attenuation by robust decoupling of car steering,” Control Engineering Practice, vol. 5, no. 8, pp. 1131–1136, 1997.

Downloads

Published

2018-07-04

How to Cite

Isira, A. S. M., Yan, N. X., Ibrahim, M. M., Saat, S., Khafe, A. M., & Darsono, A. M. (2018). Sliding Mode Observer Based Controller for Active Steering Control. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(2-7), 43–48. Retrieved from https://jtec.utem.edu.my/jtec/article/view/4417

Most read articles by the same author(s)

1 2 > >>