β-Divergence Two-Dimensional Nonnegative Matrix Factorization with Sparseness Constraints for Biomedical Signal Separation
Keywords:
Nonnegative Matrix Factorization, Sparseness Constraints, ?-Divergence, Multiplicative Rules,Abstract
A novel of β-Divergence for nonnegative matrix factorization two-dimensional (NMF2D) with sparseness constraints is proposed in this paper. This research focuses on biomedical signal separation, which denotes a separation on the mixture of heart sound and lung sound. Initially, a mixture of heart sound and lung sound has been decomposed into an independent signal, which is an estimated heart sound signal and estimated lung sound signal. The spectrum of independent signal is modelled based on 2 dimensions, which are the temporal code and the spectral basis by using β-Divergence NMF2D algorithm with sparseness constraints. The algorithm has been updated multiplicative and iteratively via multiplicative update rules (MU rules). β-Divergence with sparseness constraints allows minimization on the vagueness of source model to be completed and oneness has been applied to it. Then, estimation of each separated audio has been analyzed via comparison with the original heart sound and lung sound signal in term of Signal-to-Distortion Ratio (SDR).Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Telecommunication, Electronic and Computer Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)