Piezoelectric Energy Harvesting System Via Impact and Vibration – A Review

Authors

  • N. X. Yan Centre for Telecommunication Research & Innovation(CeTRI),Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, 76100 Melaka, Malaysia.
  • A. A. Basari Centre for Telecommunication Research & Innovation(CeTRI),Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, 76100 Melaka, Malaysia.
  • K. S. Leong Centre for Telecommunication Research & Innovation(CeTRI),Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, 76100 Melaka, Malaysia.
  • N. A. A. Nawir Centre for Telecommunication Research & Innovation(CeTRI),Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, 76100 Melaka, Malaysia.

Keywords:

Energy Harvesting, Piezoelectric Transducer, Vibration, Impact-Based,

Abstract

Recently, the vibrational energy harvesting devices have been studied and developed significantly. Although battery is the main power source for electronic devices, it still has some limitations, particularly its life time. Piezoelectric transducer is one of the devices that can be used for the vibration energy harvesting system. It has higher power density compared to the others. A comprehensive review on piezoelectric energy harvesting system is discussed and presented in this paper. The techniques of the piezoelectric energy harvester such as impact and vibration modes are reviewed. The power generator developed for the impact-based piezoelectric energy harvester is addressed in this paper. It can be concluded that the piezoelectric energy harvesting system can generate output power in the range of 34.6nW to 1.34W.

References

K. R. Rashmi, A. Jayarama, N. Navin Bappalige, and R. Pinto, “A Review on Vibration Based Piezoelectric Energy Harvesters,” Sahyadri Int. J. Res., vol. 3, no. 1, pp. 47–56, 2017.

Manish And S. Sharma, “Piezoelectric Energy Harvesting In Wireless Sensor Networks: A Review,” Int. J. Electr. Electron. Data Commun., vol. 3, no. 1, pp. 18–22.

Heung Soo Kim, Joo-Hyong Kim, and Jaehwan Kim, “A Review of Piezoelectric Energy Harvesting Based on Vibration,” Int. J. Precis. Eng. Manuf., vol. 12, no. 6, pp. 1129–1141.

P. Chaware, S. Bhusate, A. Bole, and A. B. Nagdewate, “A Review: Power Harvesting From Piezoelectric Materials,” Int. Res. J. Eng. Technol., vol. 4, no. 1, pp. 1263–1265.

H. Li, C. Tian, and Z. D. Deng, “Energy harvesting from low frequency applications using piezoelectric materials,” Appl. Phys. Rev., vol. 1, no. 4, p. 41301, 2014. [6] S. Roundy et al., “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Comput., vol. 4, no. 1, pp. 28–36, Jan. 2005.

V. R. Challa, M. G. Prasad, and F. T. Fisher, “EH009,” in 2008 17th IEEE International Symposium on the Applications of Ferroelectrics, 2008, vol. 1, pp. 1–2.

M. Renaud, P. Fiorini, R. van Schaijk, and C. van Hoof, “An impact based piezoelectric harvester adapted to low frequency environmental vibrations,” in TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009, pp. 2094– 2097.

J. Hu, J. Jong, and C. Zhao, “Vibration energy harvesting based on integrated piezoelectric components operating in different modes,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 2, pp. 386–394, Feb. 2010.

L. C. J. Blystad and E. Halvorsen, “A piezoelectric energy harvester with a mechanical end stop on one side,” in 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP), 2010, pp. 259–262.

H. Liu, C. J. Tay, C. Quan, T. Kobayashi, and C. Lee, “Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power,” J. Microelectromechanical Syst., vol. 20, no. 5, pp. 1131–1142, Oct. 2011.

P. Janphuang, D. Isarakorn, D. Briand, and N. F. de Rooij, “Energy harvesting from a rotating gear using an impact type piezoelectric MEMS scavenger,” in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011, pp. 735–738.

S. m. Chen and J. h. Hu, “Experimental study of a hybrid vibration energy harvesting mechanism,” in 2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2011, pp. 56–59.

A. Toprak and O. Tigli, “Interdigitated-electrode-based mems-scale piezoelectric energy harvester modeling and optimization using finite element method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 10, pp. 2162–2174, Oct. 2013.

M. Ferrari, M. Baù, F. Cerini, and V. Ferrari, “Impact-Enhanced Multi-Beam Piezoelectric Converter for Energy Harvesting in Autonomous Sensors,” Procedia Eng., vol. 47, no. Supplement C, pp. 418–421, 2012.

B. Andò, S. Baglio, A. R. Bulsara, V. Marletta, I. Medico, and S. Medico, “A double piezo #x2014; Snap through buckling device for energy harvesting,” in 2013 Transducers Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS EUROSENSORS XXVII), 2013, pp. 43–45.

M. A. Halim, S. Khym, and J. Y. Park, “Impact based frequency increased piezoelectric vibration energy harvester for human motion related environments,” in The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2013, pp. 949–952.

N. Jackson, F. Stam, O. Z. Olszewski, R. Houlihan, and A. Mathewson, “Broadening the Bandwidth of Piezoelectric Energy Harvesters Using Liquid Filled Mass,” Procedia Eng., vol. 120, no. Supplement C, pp. 328–332, 2015.

P. Pillatsch, E. M. Yeatman, and A. S. Holmes, “A model for magnetic plucking of piezoelectric beams in energy harvesters,” in 2013 Transducers Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS EUROSENSORS XXVII), 2013, pp. 1364–1367.

Y. S. Shih, D. Vasic, F. Costa, and W. J. Wu, “Magnetic Stoppers on Single Beam Piezoelectric Energy Harvesting,” Phys. Procedia, vol. 70, no. Supplement C, pp. 1022–1026, 2015.

S. Ju and C. H. Ji, “Indirect impact based piezoelectric energy harvester for low frequency vibration,” in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015, pp. 1913–1916.

S. Kaushal, P. K. Dubey, G. Prabhudesai, and B. D. Pant, “Novel design for wideband piezoelectric vibrational energy harvester (PVEH),” in 2015 19th International Symposium on VLSI Design and Test, 2015, pp. 1–5.

L. Van Minh, M. Hara, and H. Kuwano, “Lead-Free (K,Na)NbO3 Impact-Induced-Oscillation Microenergy Harvester,” J. Microelectromechanical Syst., vol. 24, no. 6, pp. 1887–1895, Dec. 2015.

D. Alghisi, S. Dalola, M. Ferrari, and V. Ferrari, “Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion,” Sensors Actuators A Phys., vol. 233, no. Supplement C, pp. 569–581, 2015.

A. M. Abdal-Kadhim and K. S. Leong, “Piezoelectric impact-driven energy harvester,” in 2016 IEEE International Conference on Power and Energy (PECon), 2016, pp. 407–411.

A. M. Abdal and K. S. Leong, “Piezoelectric Pre-Stressed Bending Mechanism for Impact-Driven Energy Harvester,” IOP Conf. Ser. Mater. Sci. Eng., vol. 210, no. 1, p. 12037, 2017.

K. N. Choi and H. H. Rho, “Continuous energy harvesting method using piezoelectric element,” in 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), 2015, pp. 1–4.

X. He, Q. Wen, Y. Sun, and Z. Wen, “A low-frequency piezoelectricelectromagnetic-triboelectric hybrid broadband vibration energy harvester,” Nano Energy, vol. 40, no. Supplement C, pp. 300–307, 2017.

G. Yesner, M. Kuciej, A. Safari, A. Jasim, H. Wang, and A. Maher, “Piezoelectric energy harvesting using a novel cymbal transducer design,” in 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), 2016, pp. 1–4.

A. A. Basari, S. Hashimoto, B. Homma, H. Okada, H. Okuno, and S. Kumagai, “Design and optimization of a wideband impact mode piezoelectric power generator,” Ceram. Int., vol. 42, no. 6, pp. 6962– 6968, 2016.

X. He, K. S. Teh, S. Li, L. Dong, and S. Jiang, “Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass,” Sensors Actuators A Phys., vol. 259, no. Supplement C, pp. 171–179, 2017.

J. Song, G. Zhao, B. Li, and J. Wang, “Design optimization of PVDFbased piezoelectric energy harvesters,” Heliyon, vol. 3, no. 9, p. e00377, 2017.

P. Firoozy, S. E. Khadem, and S. M. Pourkiaee, “Power enhancement of broadband piezoelectric energy harvesting using a proof mass and nonlinearities in curvature and inertia,” Int. J. Mech. Sci., vol. 133, no. Supplement C, pp. 227–239, 2017.

X. D. Xie, A. Carpinteri, and Q. Wang, “A theoretical model for a piezoelectric energy harvester with a tapered shape,” Eng. Struct., vol. 144, no. Supplement C, pp. 19–25, 2017.

T. Tan, Z. Yan, and W. Huang, “Broadband design of hybrid piezoelectric energy harvester,” Int. J. Mech. Sci., vol. 131–132, no. Supplement C, pp. 516–526, 2017.

S. Y. Khoo, Z. S. Radeef, Z. C. Ong, Y.-H. Huang, W. T. Chong, and Z. Ismail, “Structural dynamics effect on voltage generation from dual coupled cantilever based piezoelectric vibration energy harvester system,” Measurement, vol. 107, no. Supplement C, pp. 41–52, 2017.

Downloads

Published

2019-03-31

How to Cite

Yan, N. X., Basari, A. A., Leong, K. S., & Nawir, N. A. A. (2019). Piezoelectric Energy Harvesting System Via Impact and Vibration – A Review. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 11(1), 35–41. Retrieved from https://jtec.utem.edu.my/jtec/article/view/5176