Comparison of Filtering Methods for Extracting Transient Facial Wrinkle Features
Keywords:
Gabor Wavelet, Feature Extraction, Kirsh Operator, Transient Wrinkles,Abstract
Facial local features comprise an essential information to identify a personal characteristic such as age, gender, identity and expression. One of the facial local features is a wrinkle. Wrinkle is a small furrow or crease in the skin. Recently, wrinkle detection has become a topic of interest in computer vision, where many researchers developed applications like age estimation, face detection, expression recognition, facial digital beauty and etc. However, most of the research focused on permanent wrinkles instead of transient wrinkles. Transient wrinkle can be seen during the movement of facial muscle such as a facial expression. This paper presents a comparison of filtering method for extracting transient wrinkles features. The filters that have been selected are Gabor wavelet and Kirsch operator. The extracted features are the number of wrinkles, the maximum perimeter of wrinkle, the average perimeter of wrinkle, total perimeter of wrinkle, the maximum area of the wrinkle, and the total area of the wrinkle. A total of 60 sets of data extracted from Cohn-Kanade database, images from internet and self-images. These images contain weak and strong transient wrinkles at forehead region. Features selection and analysis has been done to select which feature extraction method produces better wrinkle features that can be used for the classification of wrinkle detection system. The results show that both Gabor and Kirsch methods are successful to extract transient wrinkle features, where both methods scored 100% accuracy in the classification with SVM. However, Gabor method is slightly better than Kirsch method in term of detecting weak wrinkles. The Kirsch method requires an additional noise filtering method to eliminate noise particles after the convolution of Kirsch’s kernel. In conclusion, Gabor method is more applicable to a variety of applications than Kirsch method.Downloads
Published
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.