Image Template Matching Based on Simulated Kalman Filter (SKF) Algorithm
Keywords:
Image Template Matching, Normalized Crosscorrelation, Optimization, Simulated Kalman Filter,Abstract
A novel approach to the image matching based on Simulated Kalman Filter (SKF) algorithm has been proposed in this paper. In order, the traditional algorithm to solve image matching problem takes a lot of memory and computational time, image matching problem is assigned to optimization problem and can be solved precisely. The Normalized Cross Correlation (NCC) function of template and sub image is assigned as the fitness function. Experimental results prove that the proposed algorithm is more accurate and precise compared to Particle Swarm Optimization (PSO) algorithm. The percentage of matching result for Cameraman and Mountain are 36% and 32% accordingly which is higher than PSO algorithm, which is 12% and 4% respectively.Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)