An Intelligent Recognition Procedure for Trophozoite Stages of Plasmodium Knowlesi Malaria
Keywords:
Image Processing, MLP, P. Knowlesi Malaria, Recognition, Thin Blood Smears,Abstract
Plasmodium (P.) Knowlesi is a fifth species of the malaria parasite in the world that caused a serious health problem. Current information suggests that P. Knowlesi is spread to people when an Anopheles mosquito infected by a monkey then bites and infects human (zoonotic transmission). Early identification of P. Knowlesi Malaria is an important step to an effective treatment. P. Knowlesi Malaria identification process is usually carried out with a 100x magnification of thin blood smear using microscope observation. However, this process is time-consuming and very tedious and strenuous for the human eyes. It also has a problem to differentiate between trophozoite, positive control (schizont and gametocyte) and negative control (white blood cell (WBC) and artefact). To overcome these situations, a computer-aided diagnosis system is developed to automatically identifying trophozoite stages of P. Knowlesi Malaria as early identification species, positive control and negative control. The processes involved starting from image acquisition, image processing and recognition. For image processing method, the most important part is the segmentation where the Otsu’s method is utilised to obtain the region of interest (ROI) of the infected cell. The features consist of the size of infected cell and size of the object. Finally, the recognition method using Multilayer Perceptron (MLP) is applied. The results show that the proposed automatic procedure is capable of recognising the trophozoite stage of P. Knowlesi Malaria with an accuracy of 98.70% for training and 97.67% for testing, using MLP trained by Lavernberg Marquardt (LM).References
World Health Organization, Malaria Report 2016.
D. Anggraini, A.S. Nugroho, C. Pratama, I.E. Rozi, A.A. Iskandar, R.N. Hartono, “Automated Status Identification of Microscopic Images Obtained from Malaria Thin Blood Smears”, in Proc of 2011 International Conference on Engineering and Informatics, ICEEI IEEE, pp 1-6, 17 – 19th July 2011.
Country Briefing,UCSF Global Health Group’s Malaria Elimination, Eliminating Malaria in Malaysia, March 2015.
S.B. Millar, J. Cox-Singh, “Article-Review of Human Infection with Plasmodium Knowlesi – zoonotic malaria”, Clinical Microbiology & Infection, vol. 21 (7), pp. 640-648, July 2015.
S.N.A.M. Kanafiah, Y. Jusman, N.A.M. Isa, Z. Mohamed, “RadialBased Cell Formation Algorithm for Separation of Overlapping Cells in Medical Microscopic Images”, in Procedia Computer Science of International Conference on Computer Science and Computational Intelligence (ICCSCI 2015), vol. 59, pp. 123-132, 2015.
I. Suwalka, A. Sanadhya, A. Mathur, M.S. Chouhan, “Identify Malaria Parasite Using Pattern Recognition Technique”, in Proc. Of 2012 International Conference on Computing, Communication and Applications,IEEE pp. 1-4, 2012.
N.A. Khan, H. Pervaz, A.K. Latif, A. Musharraf, Saniya, “Unsupervised Identification of Malaria Parasites using Computer Vision”, in Proc. 2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE),IEEE, pp. 263- 267, 2014.
A. Mehrjou, T. Abbasian, “Automatic Malaria Diagnosis System”, in Proc. of 2013 RSI/ISM International Conference on Robotic and Mechatronics (ICROM),IEEE, pp.205-211, 2013.
S.S. Savkare, S.P. Narote, “Automated System for Malaria Parasite Identification”, in Proc. of 2015 International Conference on Communication, Information & Computing Technology (ICCICT), IEEE, pp.1-4, Jan. 16-17th, 2015.
H. A. Nugroho, S.A. Akbar, E.E.H. Murhandarwati, “Feature Extraction and Classification for Detection Malaria Parasites in Thin Blood Smear”, in Proc. of 2015 International Conference on Informatic Technology, Computer and Electrical Engineering (ICITACEE), IEEE, pp. 197-201, Oct. 16-18th, 2015.
H.A. Mohammed, I.A.M. Abdelrahman, “Detection and Classification of Malaria in Thin Blood Slide Images”, in Proc. of 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), IEEE, pp. 1-5, 2017.
P. Rakshit, K. Bhowmik, “Detection of presence of Parasites in Human RBC in Case of Diagnosis Malaria using Image Processing”, in Proc. of 2013 IEEE Second International Conference on Image Information Processing (ICIIP), pp. 329-334, 2013.
W. Preedanan, M. Phothissonothai, W. Senavongse, S. Tantisatirapong, “Automated Detection of Plasmodium Falciparum from Giemsa-Stained Thin Blood Films”, in Proc. of 2015 8th International Conference on Knowledge and Smart Technology (KST), IEEE, pp. 215-218, 2015.
D. Anggraini, A.S. Nugroho, C. Pratama, I.E. Rozi, V. Pragesjvara, M. Gunawan, “Automated Status Identification of Microscopic Images Obtained from Malaria Thin Blood Smears using Bayes Decision: A study case in Plasmodium Falciparum”, in Proc. Of 2011 International Conference on Advance Computer Science and Information System, pp. 347-352, 2011.
L. Peng, Adaptive Median Filtering. Retrieve on 10 November 2015.
S. Bhausaheb, M. Dnyandeo, P. Machindra, A.R. Dani, “Apply Different Filtering Techniques to Remove the Speckle Noise using Medical Images”, in International Journal of Engineering Research and Applications (IJERA), ISSN:2248-9622, vol. 2(1), pp. 1071-1079, 2012.
A.S.A. Nasir, M.Y. Mashor, Z. Mohamed, “Modified Linear Contrast Stretching Algorithms: New Colour Contrast Enhancement Techniques for Microscopic Analysis of Malaria Slide Images”, Journal of Computational and Mathematical Methods in Medicine, vol. 2012(2012), pp.1-17, 2012.
L.Rosado, J.M.C.D. Costa, E. Dirk, S.C. Jaime, “A Review of Automatic Malaria Parasites Detection and Segmentation in Microscopic Images”, Journal in Anti-Infective Agents in Medicinal Chemistry, vol.14 (1), pp. 11-22, 2016.
S.R. Basha, P.K.K. Reddy, “Discrimination of Textures using Texton Patterns”, Global Journal of Computer Science and Technology: F Graphics & Vision, vol.15(3), 2015.
P. Finne, R. Finne, A. Auvinen, H. Juusela, J. Aro, L. Maattanen, M. Hakama, S. Rannikko, T.L.J Tammela, U-H. Stenman, “Predicting the outcome of Prostate Biopsy in Screen-Positive Men by a Multiplayer Perceptron Network”, Urology, ELSEVIER, vol.56 (3), pp. 418-422, Sept. 2000.
P. Kaler, “Study of Grayscale Image in Image Processing”, in International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), ISSN:2321-8169, vol.4 (11), pp. 309- 311, Nov. 2016.
Downloads
Published
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.