Review of Radiation Pattern Control Characteristics for The Microstrip Antenna Based On Electromagnetic Band Gap (EBG)

Authors

  • M. K. Abdulhameed Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia Ministry of Higher Education and Scientific Research, Baghdad, University of Kerbala, Iraq.
  • M. S. M Isa Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
  • I. M. Ibrahim Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
  • M. S. I. M. Zin Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
  • Z. Zakaria Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
  • Mowafak. K. Mohsin Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia Ministry of Higher Education and Scientific Research, Baghdad, University of Kerbala, Iraq.
  • M. F. Alrifaie Ministry of Higher Education and Scientific Research, Baghdad, University of Kerbala, Iraq.

Keywords:

EBG, Radiation Pattern Control, Microstrip Antenna, Mushroom-like EBG,

Abstract

Radiation Pattern of the antennas is necessary for many applications in the telecommunication field, such as wireless communications and radar. They lessen the interference by channelling the radiation of antenna to the interested direction to achieve the enhancement of spectrum efficiency and multipath propagation reduction that results in the saving of radiation power and the increase in gain. Various techniques have been used to implement beam steering for several years. Electromagnetic band gap (EBG) with unique features helps to prevent/assist the electromagnetic waves propagates in a specific band of frequency for all polarisation states and all incident angles. In this paper, the advantages of the EBG surface wave band gap feature were identified, if it is inserted with microstrip antennas design, which helps to rise the gain of antenna, reduce the back lobe and lessen the mutual coupling in array components. Additionally, more advantages due to the surface waves suppression and the stopping band and passing band of the EBG have been achieved in the beam steering by integrating the single patch microstrip antenna with EBG. Additionally, the new antenna structure based on the combination of the concept of a reconfigurable planar array antenna with the EBG elements requires further research to produce a new radiation pattern control technique.

References

E. Bruce and A. C. Beck, “Experiments with Directivity Steering for Fading Reduction,” Bell Syst. Tech. J., vol. 14, no. 2, pp. 195–210, 1935.

C. a. Balanis, Antenna Theory: Analysis and Design, vol. 28, no. 3. 2012.

C. G. Christodoulou, Y. Tawk, S. A. Lane, and S. R. Erwin, “Reconfigurable antennas for wireless and space applications,” Proc. IEEE, vol. 100, no. 7, pp. 2250–2261, 2012.

R. Dewan, M. K. A. Rahim, M. R. Hamid, and H. A. Majid, “Multiband Reconfigurable Antenna Using EBG Unit Cells,” 2016 IEEE Asia-Pacific Conf. Appl. Electromagn. 11 - 13 December 2016 Langkawi, Kedah, Malaysia Multiband, vol. 1, no. December, pp. 3– 6, 2016.

M. S. M. Isa et al., “Antenna Beam Steering using Sectorized Square EBG,” J. Telecommun. Electron. Comput. Eng., vol. 4, no. 1, pp. 39– 44, 2012.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059– 2062, 1987.

S. John, “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett., vol. 58, 2486–9, 1987., vol. 58, no. 23, 1987.

and H. O. E. C. M. Bowden, J. P. Dowling, “Development and applications of materials exhibiting photonic band gaps,” vol. 10, p. 1993, 1993.

E. C. Structures, “Guest Editorial Design , Synthesis , and Applications,” vol. 47, no. 11, Novemb. 1999., vol. 17, no. 11, pp. 1928–1930, 1999.

C. M. S. K. M. Ho, C. T. Chan, “Existence of a photonic gap in periodic.pdf,” Phys. Rev. Lett., vol. 65, 3152–5, 1990, vol. 65, 3, 1990.

B. A. Munk, “Frequency Selective Theory and Design,” 2000. [12] P. S. Kildal, “Artificially Soft and Hard Surfaces in Electromagnetics,” IEEE Trans. Antennas Propag., vol. 38, no. 10, pp. 1537–1544, 1990.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059–2074, 1999.

F. R. Yang, K. P. Ma, M. Yongxi Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1509–1514, 1999.

F. R. Yang, K. P. Ma, and Y. Qian, “A novel tem waveguide using uniplanar compact photonic-bandgap (uc-pbg) structure,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2092–2098, 1999.

M. K. Mohsen et al., “The Fundamental of Leaky Wave Antenna,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 1, pp. 119–127, 2018.

M.K.Abdulhameed, M.S.Mohamad Isa, I. M. Ibrahim, Mowafak.K.Mohsin, S.R.Hashim, and Pages:, “Improvement of Microstrip Antenna Performance on Thick and High Permittivity Substrate with Electromagnetic Band Gap,” J. Adv. Res. Dyn. Control Syst., vol. 4, no. Special Issue, 2018, p. 661–669 04–Special, 2018.

M.K.Abdulhameed, M. S. M. Isa, Z.Zakaria, M. K.Mohsin, and M. L. Attiah, “Mushroom-Like EBG to Improve Patch Antenna Performance For C-Band Satellite Application,” Int. J. Electr. Comput. Eng., vol. 8, no. 5, pp. 561–568, 2018.

D. Sievenpiper, “High-Impedance Electromagnetic Surfaces,” PhD Thesis, p. 150, 1999.

M. Rahman and M. a. Stuchly, “Transmission line-periodic circuit representation of planar microwave photonic bandgap structures,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 15–19, 2001.

Fan Yang and Y. Rahmat-Samii, “Reflection phase characterization of an electromagnetic band-gap (EBG) surface,” IEEE Antennas Propag. Soc. Int. Symp. (IEEE Cat. No.02CH37313), vol. 3, pp. 744– 747, 2002.

K. P. Kumar, “Passive 3D EBG for low profile Steerable Applications,” IEEE, vol. 1, no. Gcct, pp. 585–588, 2015.

F. Yang and Y. Rahmat-Samii, “Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10 I, pp. 2691–2703, 2003.

F. Yang and Y. Rahmat-Samii, “Microstrip Antennas Integrated with Electromagnetic Band-Gap (EBG) Structures: A Low Mutual Coupling Design for Array Applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10 II, pp. 2936–2946, 2003.

M. K. Harish Kumar Mohit Kumar, Abhijeet Kumar, Rajeev Kanth, “Study on Band Gap Behaviour of Electromagnetic Band Gap (EBG) Structure with Microstrip Antenna,” 2012 14th Int. Conf. Adv. Commun. Technol., pp. 356–359, 2012.

Y. Rahmat-Samii, “Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure,” IEEE Antennas Propag. Soc. Int. Symp. 2001 Dig. Held conjunction with Usn. Natl. Radio Sci. Meet. (Cat. No.01CH37229), vol. 2, pp. 478–481, 2001.

Y. Rahmat-Samii and F. Yang, “Development of Complex Artificial Ground Planes in Antenna Engineering,” Metamaterials Phys. Eng. Explor., pp. 313–349, 2006.

C. Neo and Y. H. Lee, “Patch antenna enhancement using a mushroom-like EBG structures,” IEEE Antennas Propag. Soc. AP-S Int. Symp., vol. 1, pp. 614–615, 2013.

R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh, “Aperture-coupled patch antenna on uc-pbg substrate,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2123–2130, 1999.

R. Gonzalo, P. De Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2131–2138, 1999.

J. S. Colburn, “Patch antennas on externally perforated high dielectric constant substrates,” IEEE Trans. Antennas Propag., vol. 47, no. 12, pp. 1785–1794, 1999.

W. Ebg and V. Reflector, “Gain Improvement of MSAs Array by V sing Curved,” Int. Electr. Eng. Congr. IEEE, pp. 4–7, 2014.

S. Yamini and B. Panjavarnam, “Microstrip patch antenna integrated with EBG,” Proc. 2017 2nd Int. Conf. Comput. Commun. Technol. ICCCT 2017, pp. 41–45, 2017.

J. Zaid, M. Farahani, A. Kesavan, and T. A. Denidni, “Miniaturized Microstrip Patch Antenna Using Electromagnetic Band Gap ( EBG ) structures for Multiport Passive UHF RFID-Tag Applications,” IEEE, pp. 2459–2460, 2017.

F. Yang and Y. Rahmat-Samii, “A low-profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface,” Microw. Opt. Technol. Lett., vol. 31, no. 4, pp. 264–267, 2001.

F. Yang, C.-S. Kee, and Y. Rahmat-Samii, “Step-like structure and EBG structure to improve the performance of patch antennas on high dielectric substrate,” IEEE Antennas Propag. Soc. Int. Symp. 2001 Dig. Held conjunction with Usn. Natl. Radio Sci. Meet. (Cat. No.01CH37229), vol. 2, pp. 482–485, 2001.

A. Altaf, M. A. Alsunaidi, and E. Arvas, “A Novel EBG Structure to Improve Isolation in MIMO Antenna,” IEEE, pp. 105–106, 2017.

K. V. Babu and R. Scholor, “Reduction of Mutual coupling by desegregated with EBG Structure for Microstrip Antenna Array Radar Applications,” Int. Conf. Signal Process. Commun. Power Embed. Syst. (SCOPES)-978-1-5090-4620-1/16/ ©2016 IEEE, pp. 317–320, 2016.

A. Kaabal, M. El Halaoui, S. Ahyoud, and A. Asselman, “A Low Mutual Coupling Design for Array Microstrip Antennas Integrated with Electromagnetic Band-Gap Structures,” Procedia Technol., vol. 22, no. October 2015, pp. 549–555, 2016.

A. Yu and X. Zhang, “A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure,” IEEE Antennas Wirel. Propag. Lett., vol. 2, pp. 170–172, 2003.

N. Jin, A. Yu, and X. Zhang, “An enhanced 2 × 2 antenna array based on a dumbbell EBG structure,” Microw. Opt. Technol. Lett., vol. 39, no. 5, pp. 395–399, 2003.

M. Tanabe, Y. Oishi, and Y. Masuda, “Radiation Characteristics of a Wide-Band Dipole Antenna over an Electromagnetic Band-Gap Reflector,” 978-1-4673-5692-3/13/$31.00 ©2013 IEEE, pp. 373–376, 2013.

Zhan Li and Y. Rahmat-Samii, “PBG, PMC and PEC ground planes: a case study of dipole antennas,” IEEE Antennas Propag. Soc. Int. Symp. Transm. Waves Prog. to Next Millenn. 2000 Dig. Held conjunction with Usn. Natl. Radio Sci. Meet. (Cat. No.00CH37118), vol. 2, pp. 674–677, 2000.

S. Clavijo, R. E. D??az, and W. E. McKinzie, “Design Methodology for Sievenpiper High-Impedance Surfaces: An Artificial Magnetic Conductor for Positive Gain Electrically Small Antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 10 I, pp. 2678–2690, 2003.

H. Nakano, K. Hitosugi, N. Tatsuzawa, D. Togashi, H. Mimaki, and J. Yamauchi, “Effects on the radiation characteristics of using a corrugated reflector with a helical antenna and an electromagnetic band-gap reflector with a spiral antenna,” IEEE Trans. Antennas Propag., vol. 53, no. 1 I, pp. 191–199, 2005.

R. Yadav and P. N. Patel, “EBG-inspired reconfigurable patch antenna for frequency diversity application,” AEU - Int. J. Electron. Commun., vol. 76, pp. 52–59, 2017.

F. Yang and Y. Rahmat-samii, “Patch Antennas with Switc,” vol. 47, no. 2, pp. 13–29, 2005.

L. B. Felsen, “Radiation from a Tapered Surface Wave Antenna,” IRE Trans. Antennas Propag., vol. 8, no. 6, pp. 577–586, 1960.

G. Fikioris, R. W. P. King, and T. T. Wu, “Novel Surface-Wave Antenna,” Microwaves, Antennas Propagation, IEE Proc., 1996.

R. Hougardy and R. Hansen, “Scanning surface wave antennas-- oblique surface waves over a corrugated conductor,” Antennas Propagation, IRE Trans., vol. 6, no. 4, pp. 370–376, 1958.

S. E. B. L. Microstrips, N. Chaio, T. Univeristy, and P. Constants, “Surface-Wave Effect Between Leaky-Mode Microstrips Tai-Lee,” no. 1, pp. 434–437, 2005.

F. Yang, Y. Rahmat-Samii, and A. Kishk, “A novel surface wave antenna with a monopole type pattern: A thin periodically loaded slab excited by a circular disk,” IEEE Antennas Propag. Soc. AP-S Int. Symp., vol. 1 A, pp. 742–745, 2005.

Y. R.-S. and A. K. F. Yang, “Low-profile patch-fed surface wave antenna with a monopole-like radiation patte,” Eur. Sp. Agency, (Special Publ. ESA SP, vol. IET Microw, 2007.

A. Al-Zoubi, F. Yang, and A. Kishk, “A low-profile dual-band surface wave antenna with a monopole-like pattern,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3404–3412, 2007.

D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, “A steerable leaky-wave antenna using a tunable impedance ground plane,” IEEE Antennas Wirel. Propag. Lett., vol. 1, no. 1, pp. 179–182, 2002.

M. S. Mohamad Isa, R. J. Langle, and S. Khamas, “Antenna pattern diversity using EBG,” 2010 Loughbrgh. Antennas Propag. Conf. LAPC 2010, no. November, pp. 325–328, 2010.

M. Isa, R. J. Langley, and S. Khamas, “Antenna control using EBG,” Antennas Propag. (EUCAP), Proc. 5th Eur. Conf., pp. 216–219, 2011.

S. R. Abhishek Rane, Abhishek Tanavade, Deep Sharma, Sumin Raveendran “Electromagnetic Band Gap Structure Antenna,” International Journal of Engineering Trends and Technology (IJETT), vol. 41, no.2 pp. 105-108, 2016.

Downloads

Published

2018-08-28

How to Cite

Abdulhameed, M. K., M Isa, M. S., Ibrahim, I. M., M. Zin, M. S. I., Zakaria, Z., Mohsin, M. K., & Alrifaie, M. F. (2018). Review of Radiation Pattern Control Characteristics for The Microstrip Antenna Based On Electromagnetic Band Gap (EBG). Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(3), 129–140. Retrieved from https://jtec.utem.edu.my/jtec/article/view/3348

Most read articles by the same author(s)

<< < 1 2 3 4