Time Influence on Thickness and Grains for Molybdenum Thin Film
Keywords:
Atomic Force Microscopy, DC Magnetron Sputtering, Surface Profile, Thin Film,Abstract
In this paper, DC magnetron sputtering technique was used to deposit high purity molybdenum (Mo) thin films on blank Si substrate. The deposition condition for all samples has not been changed except for the deposition time in order to study the time influence on the surface morphology of the molybdenum. The surface profiler has been sued to measure the surface thickness. Atomic force microscopy technique was employed to investigate grain structure of Mo thin film. Grains analysis and thickness for all samples show a direct relation with time. The thickness and grain parameters of molybdenum thin films increase with respect to time. Grain area, size, length and perimeter parameters are used in grain analysis.References
R. Ghodssi and P. Lin, Eds., MEMS Materials and Processes Handbook, 1st ed. berlin: springer, 2011.
S. Beeby, G. Ensell, M. Kraft, and N. White, MEMS mechanical sensors. boston: Artech House, 2004.
B. Bhushan, Tribology Issues and Opportunities in MEMS: Proceedings of the NSF/AFOSR/ASME Workshop on Tribology Issues and Opportunities in MEMS held in Columbus, Ohio, USA, 9–11 November 1997. Springer Science & Business Media, 2012.
“Sandia National laboratories,” 2015. [Online]. Available: http://www.sandia.gov/mstc/mems/.
B. Bhushan, Springer Handbook of Nanotechnology. Springer Science & Business Media, 2010.
B. Bhushan, Handbook of micro/nano tribology. CRC press, 1998.
A. Syukor, M. Jaya, N. Athirah, A. Kadir, H. T. Jaya , And H. T. Jaya, “Modeling Of Tin Coating Roughness Using Fuzzy Logic Approach,” Int. Symp. Res. Innivation Sustain., No. October, Pp. 1563–1567, 2014.
A. S. Mohamad Jaya, M. I. Mohammad Jarrah, and M. R. Muhamad, “Modeling of TiN Coating Grain Size Using RSM Approach,” Appl. Mech. Mater., vol. 754–755, pp. 738–742, 2015.
N. A. B. D. Rahman, A. B. D. Samad, And H. Basari, “Modeling And Optimization Of Physical Vapour Deposition Coating Process Parameters For Tin Grain Size Using Combined Genetic Algorithms With Response Surface Methodology,” J. Theor. Appl. Inf. Technol., Vol. 77, No. 2, Pp. 235–252, 2015.
D. A. H. Hanaor, G. Triani, and C. C. Sorrell, “Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films,” Surf. Coatings Technol., vol. 205, no. 12, pp. 3658 – 3664, 2011.
T. Mehmood, A. Kaynak, X. J. Dai, A. Kouzani, K. Magniez, D. R. de Celis, C. J. Hurren, and J. du Plessis, “Study of oxygen plasma pretreatment of polyester fabric for improved polypyrrole adhesion.,” Mater. Chem. Phys., vol. 143, no. 2, pp. 668–675, 2014.
A. Duk, M. Schmidbauer, and J. Schwarzkopf, “Anisotropic onedimensional domain pattern in NaNbO3 epitaxial thin films grown on (110) TbScO3,” Appl. Phys. Lett., vol. 102, no. 9, p. 091903, 2013.
K. Khojier, M. R. K. Mehr, and H. Savaloni, “Annealing temperature effect on the mechanical and tribological properties of molybdenum nitride thin films,” J. Nanostructure Chem., vol. 3, no. 1, pp. 1–7, 2013.
R. F. Kwasnick, G. E. Possin, D. E. T. L. Holden, and R. J. Saia, “Thin film transistor stucture with improved source/drain contacts,” 1996.
S. Lee, J. Y. Kim, T.-W. Lee, W.-K. Kim, B.-S. Kim, J. H. Park, J.-S. Bae, Y. C. Cho, J. Kim, M.-W. Oh, C. S. Hwang, and S.-Y. Jeong, “Fabrication of high-quality single-crystal Cu thin films using radiofrequency sputtering.,” Sci. Rep., vol. 4, p. 6230, 2014.
N. Kumari, A. K. Singh, and P. K. Barhai, “Study of Properties of AlN Thin Films Deposited by Reactive Magnetron Sputtering,” Int. J. Thin Film. Sci. Technol., vol. 3, no. 2, pp. 43–49, 2014.
K. R. Nagabhushana, B. N. Lakshminarasappa, K. Narasimha Rao, F. Singh, and I. Sulania, “AFM and photoluminescence studies of swift heavy ion induced nanostructured aluminum oxide thin films,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 266, no. 7, pp. 1049–1054, 2008.
D. Nesheva, A. Petrova, S. Stavrev, Z. Levi, and Z. Aneva, “Thin film semiconductor nanomaterials and nanostructures prepared by physical vapour deposition: An atomic force microscopy study,” J. Phys. Chem. Solids, vol. 68, no. 5, pp. 675–680, 2007.
A. Heredia, C. C. Bui, U. Suter, P. Young, and T. E. Schaffer, “AFM combines functional and morphological analysis of peripheral myelinated and demyelinated nerve fibers,” Neuroimage, vol. 37, no. 4, pp. 1218–1226, 2007.
D. Marchetto, A. Rota, L. Calabri, G. C. Gazzadi, C. Menozzi, and S. Valeri, “AFM investigation of tribological properties of nano-patterned silicon surface,” Wear, vol. 265, no. 5, pp. 577–582, 2008.
N. Jalili and K. Laxminarayana, “A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences,” Mechatronics, vol. 14, no. 8, pp. 907–945, 2004.
M. Kwoka, L. Ottaviano, and J. Szuber, “AFM study of the surface morphology of L-CVD SnO2 thin films,” Thin Solid Films, vol. 515, no. 23, pp. 8328–8331, 2007.
Y. Strausser, Characterization in silicon processing. Elsevier, 2013.
M. R. Buyong, F. Larki, M. S. Faiz, A. A. Hamzah, J. Yunas, and B. Y. Majlis, “A tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation,” Sensors (Switzerland), vol. 15, no. 5, pp. 10973–10990, 2015.
Downloads
Published
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.