Time Influence on Thickness and Grains for Molybdenum Thin Film


  • Muhtade Mustafa Aqil Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
  • Mohd Asyadi Azam Carbon Research Technology Research Group Advanced Manufacturing Centre, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
  • Rhonira Latif Institutes of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
  • Fauziyah Salehuddin Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.


Atomic Force Microscopy, DC Magnetron Sputtering, Surface Profile, Thin Film,


In this paper, DC magnetron sputtering technique was used to deposit high purity molybdenum (Mo) thin films on blank Si substrate. The deposition condition for all samples has not been changed except for the deposition time in order to study the time influence on the surface morphology of the molybdenum. The surface profiler has been sued to measure the surface thickness. Atomic force microscopy technique was employed to investigate grain structure of Mo thin film. Grains analysis and thickness for all samples show a direct relation with time. The thickness and grain parameters of molybdenum thin films increase with respect to time. Grain area, size, length and perimeter parameters are used in grain analysis.


R. Ghodssi and P. Lin, Eds., MEMS Materials and Processes Handbook, 1st ed. berlin: springer, 2011.

S. Beeby, G. Ensell, M. Kraft, and N. White, MEMS mechanical sensors. boston: Artech House, 2004.

B. Bhushan, Tribology Issues and Opportunities in MEMS: Proceedings of the NSF/AFOSR/ASME Workshop on Tribology Issues and Opportunities in MEMS held in Columbus, Ohio, USA, 9–11 November 1997. Springer Science & Business Media, 2012.

“Sandia National laboratories,” 2015. [Online]. Available: http://www.sandia.gov/mstc/mems/.

B. Bhushan, Springer Handbook of Nanotechnology. Springer Science & Business Media, 2010.

B. Bhushan, Handbook of micro/nano tribology. CRC press, 1998.

A. Syukor, M. Jaya, N. Athirah, A. Kadir, H. T. Jaya , And H. T. Jaya, “Modeling Of Tin Coating Roughness Using Fuzzy Logic Approach,” Int. Symp. Res. Innivation Sustain., No. October, Pp. 1563–1567, 2014.

A. S. Mohamad Jaya, M. I. Mohammad Jarrah, and M. R. Muhamad, “Modeling of TiN Coating Grain Size Using RSM Approach,” Appl. Mech. Mater., vol. 754–755, pp. 738–742, 2015.

N. A. B. D. Rahman, A. B. D. Samad, And H. Basari, “Modeling And Optimization Of Physical Vapour Deposition Coating Process Parameters For Tin Grain Size Using Combined Genetic Algorithms With Response Surface Methodology,” J. Theor. Appl. Inf. Technol., Vol. 77, No. 2, Pp. 235–252, 2015.

D. A. H. Hanaor, G. Triani, and C. C. Sorrell, “Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films,” Surf. Coatings Technol., vol. 205, no. 12, pp. 3658 – 3664, 2011.

T. Mehmood, A. Kaynak, X. J. Dai, A. Kouzani, K. Magniez, D. R. de Celis, C. J. Hurren, and J. du Plessis, “Study of oxygen plasma pretreatment of polyester fabric for improved polypyrrole adhesion.,” Mater. Chem. Phys., vol. 143, no. 2, pp. 668–675, 2014.

A. Duk, M. Schmidbauer, and J. Schwarzkopf, “Anisotropic onedimensional domain pattern in NaNbO3 epitaxial thin films grown on (110) TbScO3,” Appl. Phys. Lett., vol. 102, no. 9, p. 091903, 2013.

K. Khojier, M. R. K. Mehr, and H. Savaloni, “Annealing temperature effect on the mechanical and tribological properties of molybdenum nitride thin films,” J. Nanostructure Chem., vol. 3, no. 1, pp. 1–7, 2013.

R. F. Kwasnick, G. E. Possin, D. E. T. L. Holden, and R. J. Saia, “Thin film transistor stucture with improved source/drain contacts,” 1996.

S. Lee, J. Y. Kim, T.-W. Lee, W.-K. Kim, B.-S. Kim, J. H. Park, J.-S. Bae, Y. C. Cho, J. Kim, M.-W. Oh, C. S. Hwang, and S.-Y. Jeong, “Fabrication of high-quality single-crystal Cu thin films using radiofrequency sputtering.,” Sci. Rep., vol. 4, p. 6230, 2014.

N. Kumari, A. K. Singh, and P. K. Barhai, “Study of Properties of AlN Thin Films Deposited by Reactive Magnetron Sputtering,” Int. J. Thin Film. Sci. Technol., vol. 3, no. 2, pp. 43–49, 2014.

K. R. Nagabhushana, B. N. Lakshminarasappa, K. Narasimha Rao, F. Singh, and I. Sulania, “AFM and photoluminescence studies of swift heavy ion induced nanostructured aluminum oxide thin films,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 266, no. 7, pp. 1049–1054, 2008.

D. Nesheva, A. Petrova, S. Stavrev, Z. Levi, and Z. Aneva, “Thin film semiconductor nanomaterials and nanostructures prepared by physical vapour deposition: An atomic force microscopy study,” J. Phys. Chem. Solids, vol. 68, no. 5, pp. 675–680, 2007.

A. Heredia, C. C. Bui, U. Suter, P. Young, and T. E. Schaffer, “AFM combines functional and morphological analysis of peripheral myelinated and demyelinated nerve fibers,” Neuroimage, vol. 37, no. 4, pp. 1218–1226, 2007.

D. Marchetto, A. Rota, L. Calabri, G. C. Gazzadi, C. Menozzi, and S. Valeri, “AFM investigation of tribological properties of nano-patterned silicon surface,” Wear, vol. 265, no. 5, pp. 577–582, 2008.

N. Jalili and K. Laxminarayana, “A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences,” Mechatronics, vol. 14, no. 8, pp. 907–945, 2004.

M. Kwoka, L. Ottaviano, and J. Szuber, “AFM study of the surface morphology of L-CVD SnO2 thin films,” Thin Solid Films, vol. 515, no. 23, pp. 8328–8331, 2007.

Y. Strausser, Characterization in silicon processing. Elsevier, 2013.

M. R. Buyong, F. Larki, M. S. Faiz, A. A. Hamzah, J. Yunas, and B. Y. Majlis, “A tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation,” Sensors (Switzerland), vol. 15, no. 5, pp. 10973–10990, 2015.




How to Cite

Aqil, M. M., Azam, M. A., Latif, R., & Salehuddin, F. (2017). Time Influence on Thickness and Grains for Molybdenum Thin Film. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-13), 69–73. Retrieved from https://jtec.utem.edu.my/jtec/article/view/2568

Most read articles by the same author(s)

1 2 > >>