The CSIW Resonator Sensor for Microfluidic Characterization Using Defected Ground Structure
Keywords:
Defected Ground Structure, Microfluidic, Material characterization, Permittivity, Substrate integrated waveguide,Abstract
This paper presents a miniaturized circular substrate integrated waveguide (CSIW) resonator sensor with the integration of defected ground structure (DGS) to characterize the dielectric properties of the aqueous solvent. The sensor is developed based on the resonant perturbation method for high sensitivity and accurate measurement. The proposed structure is employed using a substrate integrated waveguide topology at 4.4 GHz with microliter ( ) volume of sample at a time. The integration of DGS structure significantly reduces the overall size of the sensor with more than 50% geometrical reduction. The changes in resonant frequency shows an identical performance based on the relative permittivity of the sample. Implications of the results and future research directions are also presented. Finally, a comparison between the proposed sensors are performed in order to identify the best sensing approach for an advancement of material characterization industry.Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)