Hand Movement Imagery Task Classification using Fractal Dimension Feature

Authors

  • Mohd Shuhanaz Zanar Azalan School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau, Malaysia.
  • A. H. Adom School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau, Malaysia.
  • Paulraj M.P School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau, Malaysia.
  • A. H. Abdullah School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau, Malaysia.
  • Fahisal Abdullah School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau, Malaysia.

Keywords:

Brain Machine Interface, Feed-Forward Neural Network, Fractal Dimension, Motor Imagery,

Abstract

In this paper, a nonstimulus-based Brain Machine Interface (BMI) approach is used to acquire the brain signal from ten different subjects using 19 channel EEG electrodes while performing four different hand movement imaginary tasks. Three different Fractal Dimension algorithm namely Box counting algorithm, Higuchi algorithm, and Detrended fluctuation algorithm are used to extract fractal dimension features from recorded EEG signal and associated with the respective mental tasks. Three Feed-Forward Neural Network model is developed. The performance of the three Neural Network model is evaluated in term of classification rate and compared. The performance of the developed network models are evaluated through simulation. It is observed that the neural network model trained with Higuchi algorithm has contributed high classification accuracy with the better training and testing time for all 10 subjects. The result clearly indicates that the Higuchi fractal dimension algorithm can be used as a feature to classify motor imagery task for the proposed BMI system.

References

J. Wolpaw, “Brain–computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113, pp. 767–791, 2002.

W. P. Teo and E. Chew, “Is motor-imagery brain-computer interface feasible in stroke rehabilitation?,” PM R, vol. 6, no. 8, pp. 723–728, 2014.

J. Decety and J. Grèzes, “Neural mechanisms subserving the perception of human actions,” vol. 6613, no. May, pp. 172–178, 1999.

T. Hanakawa and M. Honda, “The Role of Rostral Brodmann Area 6 in Mental-operation Tasks : an Integrative Neuroimaging Approach,” pp. 1157–1170, 2002.

C. H. Anderson, Neural Engineering. 2007.

G. Pfurtscheller and F. H. Lopes, “Event-related EEG / MEG synchronization and desynchronization : basic principles,” Clin. Neurophysiol., vol. 110, pp. 1842–1857, 1999.

J. S. Brumberg, E. J. Wright, D. S. Andreasen, F. H. Guenther, and P. R. Kennedy, “Classification of intended phoneme production from chronic intracortical microelectrode recordings in speech-motor cortex,” Front. Neurosci., vol. 5, no. MAY, pp. 1–12, 2011.

A. Kübler, F. Nijboer, J. Mellinger, T. M. Vaughan, H. Pawelzik, G. Schalk, D. J. McFarland, N. Birbaumer, and J. R. Wolpaw, “Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface,” Neurology, vol. 64, no. 10, pp. 1775–1777, 2005.

T. M. Vaughan, D. J. McFarland, G. Schalk, W. A. Sarnacki, D. J. Krusienski, E. W. Sellers, and J. R. Wolpaw, “The wadsworth BCI research and development program: At home with BCI,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 229–233, 2006.

G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, “EEGbased discrimination between imagination of right and left hand movement,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 6, pp. 642–651, 1997.

J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain-computer interface research at the Wadsworth Center,” IEEE Trans. Rehabil. Eng., vol. 8, no. 2, pp. 222–226, 2000.

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791, 2002.

B. Obermaier, G. R. Müller, and G. Pfurtscheller, “‘Virtual Keyboard’ Controlled by Spontaneous EEG Activity,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, no. 4, pp. 422–426, 2003.

G. R. Müller-Putz, R. Scherer, G. Pfurtscheller, and R. Rupp, “EEGbased neuroprosthesis control: A step towards clinical practice,” Neurosci. Lett., vol. 382, no. 1–2, pp. 169–174, 2005.

B. Blankertz, G. Dornhege, M. Krauledat, K. R. Müller, V. Kunzmann, F. Losch, and G. Curio, “The Berlin brain-computer interface: EEG-based communication without subject training,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 147–152, 2006.

F. Cincotti, D. Mattia, F. Aloise, S. Bufalari, G. Schalk, G. Oriolo, A. Cherubini, M. G. Marciani, and F. Babiloni, “Non invasive braincomputer interface system: towards its application as assistive technology,” Brain Res. Bull., vol. 75, no. 6, pp. 796–803, 2008.

G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schl??gl, B. Obermaier, and M. Pregenzer, “Current trends in Graz Brain-Computer Interface (BCI) research,” IEEE Trans. Rehabil. Eng., vol. 8, no. 2, pp. 216–219, 2000.

G. Pfurtscheller and C. Neuper, “Motor imagery and direct braincomputer communication,” Proc. IEEE, vol. 89, no. 7, pp. 1123–1134, 2001.

Siuly, Y. Li, J. Wu, and J. Yang, “Developing a logistic regression model with cross-correlation for motor imagery signal recognition,” 2011 IEEE/ICME Int. Conf. Complex Med. Eng. C. 2011, pp. 502– 507, 2011.

S. Siuly and Y. Li, “Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 4, pp. 526–538, 2012.

S. A. Park, H. J. Hwang, J. H. Lim, J. H. Choi, H. K. Jung, and C. H. Im, “Evaluation of feature extraction methods for EEG-based braincomputer interfaces in terms of robustness to slight changes in electrode locations,” Med. Biol. Eng. Comput., vol. 51, no. 5, pp. 571– 579, 2013.

M. S. Review, “FUNDAMENTALS OF EEG MEASUREMENT M . Teplan,” vol. 2, pp. 1–11, 2002.

A. (Eds. . Budzynski, T. H., Budzynski, H. K., Evans, J. R., & Abarbanel, Introduction to Quantitative EEG and Neurofeedback 2nd Edition. Academic Press, 2009.

M. Rangaswamy, B. Porjesz, D. B. Chorlian, K. Wang, K. A. Jones, L. O. Bauer, J. Rohrbaugh, S. J. O. Connor, S. Kuperman, T. Reich, and H. Begleiter, “Beta Power in the EEG of Alcoholics,” 2002.

M. P. Paulraj, A. H. Adom, C. R. Hema, and D. Purushothaman, “Brain Machine Interface for Physically Retarded People using Colour Visual Tasks,” pp. 82–85, 2010.

M. Phothisonothai and K. Watanabe, “Optimal Fractal Feature and Neural Network : EEG Based BCI Applications,” 2013.

Downloads

Published

2018-05-29

How to Cite

Azalan, M. S. Z., Adom, A. H., M.P, P., Abdullah, A. H., & Abdullah, F. (2018). Hand Movement Imagery Task Classification using Fractal Dimension Feature. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-13), 139–143. Retrieved from https://jtec.utem.edu.my/jtec/article/view/4140