Tapered Fiber Bragg Grating Sensor Coated with Zinc Oxide Nanostructures for Humidity Measurement
Keywords:
Fiber Bragg Grating (FBG), Humidity Sensor, Tapered FBG, Zinc Oxide, ZnO Nanostructures,Abstract
A new approach to measure relative humidity changes by using fiber Bragg grating (FBG) is presented. Etching method is used to fabricate an FBG taper, which is then coated with zinc oxide (ZnO) nanostructures. The performance of the ZnO coated FBG is compared to its uncoated version and the experimental results produced a sensitivity of 2.51 pm/% and 1.36 pm/% respectively. The results demonstrate the ability of ZnO coatings in enhancing the performance of the sensor for the measurement of relative humidity.References
Parsons K., Human thermal environments: the effects of hot,moderate, and cold environments on human health, comfort,and
performance: Crc Press. 2014.
Raju T., Sekhar K. R., Raju N. L., and Kumar P. S., “WSN Based Industrial Environmental Monitoring System Using µC/OS-II”,IJRCCT, vol.2, 2014, pp- 1528-1532.
Lourence F. and Pruitt W., “A psychrometer system for micrometeorology profile determination”, Journal of Applied Meteorology, vol.8, 1969, pp.492-498.
Shah J., Kotnala R., Singh B., and Kishan H., “Microstructuredependent humidity sensitivity of porous MgFe 2 O 4 CeO 2 ceramic”,Sensors and Actuators B: Chemical, vol.128, 2007, pp. 306-311.
Farahani H., Wagiran R., and Hamidon M. N., “Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review”, Sensors. Vol.14, 2014, pp. 7881-7939.
Sabri N., Aljunid S., Salim M., and Fouad S., “Fiber Optic Sensors: Short Review and Applications”, Recent Trends in Physics of Material Science and Technology, ed: Springer, 2015, pp.299-311.
Grattan K. and Sun T., “Fiber optic sensor technology: an overview”,Sensors and Actuators A: Physical. 822000.: 40-61.
Yeo T., Sun T., and Grattan K., “Fibre-optic sensor technologies for humidity and moisture measurement”, Sensors and Actuators A: Physical, vol.144, 2008, pp.280-295.
Moyo P., Brownjohn J., Suresh R., and Tjin, S., “Development of fiber Bragg grating sensors for monitoring civil infrastructure”, Engineering structures, vol.27, 2005, pp.1828-1834.
Hill K. O., Malo B., Bilodeau F., Johnson D., and Albert J., “ Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”, Applied Physics Letters, vol.62, 1993,pp.1035-1037.
Dai Y., Li P., Liu Y., Asundi A., and Leng J., “Integrated real-time monitoring system for strain/temperature distribution based on simultaneous wavelength and time division multiplexing technique”,Optics and Lasers in Engineering, vol.59, 2014, pp.19-24.
Saccomanno A., Pagnano D., Irace A., Cusano A., Giordano M., and Breglio G., “On the Design of a Clad-Etched Fiber Bragg Grating Sensor for Magnetic Field Sensing Applications”, Sensors and Microsystems, ed: Springer, 2014, pp.227-231.
Li T., Dong X., Chan C. C., Zhao C.-L., and Zu P., “Humidity sensor based on a multimode-fiber taper coated with polyvinyl alcohol interacting with a fiber Bragg grating”, Sensors Journal, IEEE, vol.12, 2012, pp.2205-2208.
Ding F., Wang L., Fang N., and Huang Z., “Experimental study on humidity sensing using a FBG sensor with polyimide coating”, in Asia Communications and Photonics Conference and Exhibition, 2010, pp.79900C-79900C-7.
Correia S. F., Antunes P., Pecoraro E., Lima P. P., Varum H., Carlos L. D., et al., “Optical fiber relative humidity sensor based on a FBG with a Di-ureasil coating”, Sensors, vol.12, 2012, pp.8847-8860.
Devan R. S., Patil R. A., Lin J. H., and Ma Y. R., “One‐Dimensional Metal‐Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications”, Advanced Functional Materials, vol.22, 2012, pp.3326-3370.
Ahmad M. Z., Sadek A. Z., Latham K., Kita J., Moos R., and Wlodarski W., “Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing”, Sensors and Actuators B: Chemical, vol.187, 2013, pp.295-300.
Spencer M. J., “Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations”, Progress in Materials Science, vol.57, 2012, pp.437-486.
Baruah S. and Dutta J., “Effect of seeded substrates on hydrothermally grown ZnO nanorods”, Journal of sol-gel science and technology, vol.50, 2009, pp.456-464.
Downloads
Published
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.