Tapered Fiber Bragg Grating Sensor Coated with Zinc Oxide Nanostructures for Humidity Measurement

Authors

  • Aisyah Mohamad Aris Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia. Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
  • Husna Abdul Rahman Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia.
  • Ninik Irawati Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia. Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia .
  • Sulaiman Wadi Harun Photonics Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia. Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
  • Suzi Seroja Sarnin Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia.

Keywords:

Fiber Bragg Grating (FBG), Humidity Sensor, Tapered FBG, Zinc Oxide, ZnO Nanostructures,

Abstract

A new approach to measure relative humidity changes by using fiber Bragg grating (FBG) is presented. Etching method is used to fabricate an FBG taper, which is then coated with zinc oxide (ZnO) nanostructures. The performance of the ZnO coated FBG is compared to its uncoated version and the experimental results produced a sensitivity of 2.51 pm/% and 1.36 pm/% respectively. The results demonstrate the ability of ZnO coatings in enhancing the performance of the sensor for the measurement of relative humidity.

References

Parsons K., Human thermal environments: the effects of hot,moderate, and cold environments on human health, comfort,and

performance: Crc Press. 2014.

Raju T., Sekhar K. R., Raju N. L., and Kumar P. S., “WSN Based Industrial Environmental Monitoring System Using µC/OS-II”,IJRCCT, vol.2, 2014, pp- 1528-1532.

Lourence F. and Pruitt W., “A psychrometer system for micrometeorology profile determination”, Journal of Applied Meteorology, vol.8, 1969, pp.492-498.

Shah J., Kotnala R., Singh B., and Kishan H., “Microstructuredependent humidity sensitivity of porous MgFe 2 O 4 CeO 2 ceramic”,Sensors and Actuators B: Chemical, vol.128, 2007, pp. 306-311.

Farahani H., Wagiran R., and Hamidon M. N., “Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review”, Sensors. Vol.14, 2014, pp. 7881-7939.

Sabri N., Aljunid S., Salim M., and Fouad S., “Fiber Optic Sensors: Short Review and Applications”, Recent Trends in Physics of Material Science and Technology, ed: Springer, 2015, pp.299-311.

Grattan K. and Sun T., “Fiber optic sensor technology: an overview”,Sensors and Actuators A: Physical. 822000.: 40-61.

Yeo T., Sun T., and Grattan K., “Fibre-optic sensor technologies for humidity and moisture measurement”, Sensors and Actuators A: Physical, vol.144, 2008, pp.280-295.

Moyo P., Brownjohn J., Suresh R., and Tjin, S., “Development of fiber Bragg grating sensors for monitoring civil infrastructure”, Engineering structures, vol.27, 2005, pp.1828-1834.

Hill K. O., Malo B., Bilodeau F., Johnson D., and Albert J., “ Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”, Applied Physics Letters, vol.62, 1993,pp.1035-1037.

Dai Y., Li P., Liu Y., Asundi A., and Leng J., “Integrated real-time monitoring system for strain/temperature distribution based on simultaneous wavelength and time division multiplexing technique”,Optics and Lasers in Engineering, vol.59, 2014, pp.19-24.

Saccomanno A., Pagnano D., Irace A., Cusano A., Giordano M., and Breglio G., “On the Design of a Clad-Etched Fiber Bragg Grating Sensor for Magnetic Field Sensing Applications”, Sensors and Microsystems, ed: Springer, 2014, pp.227-231.

Li T., Dong X., Chan C. C., Zhao C.-L., and Zu P., “Humidity sensor based on a multimode-fiber taper coated with polyvinyl alcohol interacting with a fiber Bragg grating”, Sensors Journal, IEEE, vol.12, 2012, pp.2205-2208.

Ding F., Wang L., Fang N., and Huang Z., “Experimental study on humidity sensing using a FBG sensor with polyimide coating”, in Asia Communications and Photonics Conference and Exhibition, 2010, pp.79900C-79900C-7.

Correia S. F., Antunes P., Pecoraro E., Lima P. P., Varum H., Carlos L. D., et al., “Optical fiber relative humidity sensor based on a FBG with a Di-ureasil coating”, Sensors, vol.12, 2012, pp.8847-8860.

Devan R. S., Patil R. A., Lin J. H., and Ma Y. R., “One‐Dimensional Metal‐Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications”, Advanced Functional Materials, vol.22, 2012, pp.3326-3370.

Ahmad M. Z., Sadek A. Z., Latham K., Kita J., Moos R., and Wlodarski W., “Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing”, Sensors and Actuators B: Chemical, vol.187, 2013, pp.295-300.

Spencer M. J., “Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations”, Progress in Materials Science, vol.57, 2012, pp.437-486.

Baruah S. and Dutta J., “Effect of seeded substrates on hydrothermally grown ZnO nanorods”, Journal of sol-gel science and technology, vol.50, 2009, pp.456-464.

Downloads

Published

2017-04-01

How to Cite

Mohamad Aris, A., Abdul Rahman, H., Irawati, N., Harun, S. W., & Sarnin, S. S. (2017). Tapered Fiber Bragg Grating Sensor Coated with Zinc Oxide Nanostructures for Humidity Measurement. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(1-5), 1–5. Retrieved from https://jtec.utem.edu.my/jtec/article/view/1822

Most read articles by the same author(s)