Facial Recognition Based on Machine Vision

Authors

  • Pedro Enrique Ferrin Pacheco Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador.
  • Dario Jose Mendoza Chipantasi Departamento de Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador.
  • Nancy Velasco E. Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador.

Keywords:

Robust Face Tracking, Multiple Identification, Face Recognition,

Abstract

This paper proposes a recognition and face tracking based on computer vision techniques using OpenCV libraries by applying multiple phases in cascade. The algorithm allows for a more robust tracking because it combines face and eye detection. Besides, it detects edges and cuts the region of interest (ROI) where the face is located. After that, the algorithm verifies if there is any face in the ROI passing again the face and eye detector. The identification is done through a comparison of the detected face and a stored database of images.

References

Pantic M, Nijholt A, Pentland A, Huanag TS 2008 Human-centred intelligent human-computer Interaction (HCI2): how far are we from attaining it. Int J Auton Adapt Commun Syst 1:168-187.

Mitra S, Acharya T. 2007. Gesture recognition: a survey. IEEE Trans Syst Man Cybern (SMC)Part C Appl, Rev. 37(3):311-324.

H. P. Moravec. 1983. Locomotion, vision and intelligence. In

International Symposiun of Robotic Research.

Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM computing surveys (CSUR), 35(4), 399-458.

Turk, M A, & Pentland, A P. 1991. Face recognition using eigenfaces. In Computer Vision and Pattern Recognition Proceedings CVPR'91, IEEE Computer Society Conference on, 586-591.

Ahonen, T., Hadid, A., & Pietikainen, M. 2006. Face description with local binary patterns: Application to face recognition. Pattern Analysis and MachineIntelligence IEEE Transactions on, 28(12):2037-2041.

H. Kobayashi and F. Hara, The Recognition of Basic Facial

Expressions by Neural Network. Proceedings of International Joint Conference on NeuralNetwork, 460-466

Rajesh A. Patil · Vineet Sahula, A. S. 2014. Features classification using geometrical deformation feature. Springerlink, 747-748.

Ekman, P., Friesen, W.V. 1978.Facial Action Coding System Manual. Palo Alto Consulting Psychologists Press, Palo Alto

Team opencv dev. 2011. openCV. [Online]. January 2016. From OpenCVdocumentation:

http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html#canny-detector

Team opencv dev. 2011. openCV. [Online]. January 2016. From OpenCV documentation:

http://stackoverflow.com/questions/28231066/how-to-crop-thedetected-face-image-in-opencv-java

Team opencv dev. (2011). openCV. Recuperado el Enero de 2016, de open CV:

http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html#canny-detector

Team opencv dev. 2011. openCV. Recuperado el Marzo de 2016, de openCV:

http://docs.opencv.org/2.4/modules/contrib/doc/facerec/tutorial/facerec_video_recognition.html.

Downloads

Published

2017-03-15

How to Cite

Ferrin Pacheco, P. E., Mendoza Chipantasi, D. J., & E., N. V. (2017). Facial Recognition Based on Machine Vision. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(1-3), 165–168. Retrieved from https://jtec.utem.edu.my/jtec/article/view/1764