Tracking Objects using Artificial Neural Networks and Wireless Connection for Robotics

Authors

  • Johnny Mauricio Barreno Onate Departamento de Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
  • Dario Jose Mendoza Chipantasi Departamento de Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
  • Nancy del Rocio Velasco Erazo Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador

Keywords:

Feature Extraction, ANN, HSV, Wireless, Object Tracking,

Abstract

Tracking objects are used in many areas, and one of them is robotics. The goal in this work focuses on a robot that can follow an object that is in front of it. This application has two links: wireless and Bluetooth. The first one connects a mobile phone mounted on a robot for image acquisition and a personal computer (PC), and the second links a PC and a mobile robot to control the motors by open source, Arduino Board. The algorithm uses several patterns for training the Artificial Neural Network (ANN) and for object identification. Then, it is complemented by the extraction feature in Hue Saturation Value (HSV) color space. This algorithm uses C ++ language with OpenCV libraries for computer vision.

References

Wang J. and Yang J. 2008. Relative discriminant coefficient base multi-cue fusion for robust object tracking. Springer Link.

Wang L. Y. Y. 2008. Real-Time Tracking of the Shoot Point from Light Pen Based on Camshift. IEEE. 560-564.

Kale K., Pawar S. and Dhulekar P. 2015. Moving object tracking using optical flow and motion vector estimation. IEEE. 1 – 6.

Pieropan, A., et al. 2016. Robust and adaptive keypoint-based object tracking. Advanced Robotics, 30(4): 258-269.

Karam A., Qadi W., Melkon K., Fakes, B., Sababha B., & Al-Mousa

A. 2014. A compact portable object tracking system. In 2014 5th International Conference on IEEE Information and Communication Systems (ICICS). 1-5.

Huang S. and Hong J.. Moving object tracking system based on camshaft and Kalman filter. IEEE. 1423 – 1426.

Li N., Zhang D., Gu X., Huang L, Liu W. and Xu T. 2015. An improved mean shift algorithm for moving object tracking.

IEEE.1425 - 1429

Islam A., Hasan Md. R., Rahaman R., Raiyan K. S. M. and Ahmme S. 2007. Designing ANN using sensitivity & hypothesis correlation testing. IEEE. 1 – 6.

Ching, Y. K. 2009. Visitor face tracking system using OpenCV library. IEEE. 196 – 199.

Druzhkov, P. N. et al. 2011. New object detection features in the OpenCV library. Pattern Recognition and Image Analysis, 21(3):384-386.

Comport, Andrew I., Marchand, Éric Chaumette, François. 2005. Efficient model-based tracking for robot vision. Advanced Robotics, 19(10):1097-1113.

Lang, H., Wang, Y., & de Silva C. W. 2010. Vision based object identification and tracking for mobile robot visual servo control. In Control and Automation (ICCA), 2010 8th IEEE International Conference on IEEE. 92-96.

Bay H., Tuytelaars T., & Van Gool L. 2006. Surf: Speeded up robust features. In Computer vision–ECCV 2006, Springer Berlin

Heidelberg, 404-417.

Bradski G. R. 1998. Computer vision face tracking for use in a perceptual user interface.

Downloads

Published

2017-03-15

How to Cite

Barreno Onate, J. M., Mendoza Chipantasi, D. J., & Velasco Erazo, N. del R. (2017). Tracking Objects using Artificial Neural Networks and Wireless Connection for Robotics. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(1-3), 161–164. Retrieved from https://jtec.utem.edu.my/jtec/article/view/1763