Parameter Optimization of a Tubular Linear Type Reluctance Motor for High Thrust Force

Authors

  • M.M. Ghazaly Centre of Excellence of Robotics & Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka
  • C.K. Yeo Centre of Excellence of Robotics & Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka
  • S.H. Chong Centre of Excellence of Robotics & Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka
  • I. Yusri Centre of Excellence of Robotics & Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka
  • S.P. Tee Centre of Excellence of Robotics & Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka

Keywords:

Finite Element Method (FEM), Linear Electromagnetic Motor, Thrust Force, Tubular Linear Reluctance Motor,

Abstract

In this paper, the parameters of a linear type reluctance motor was verified by varying the motor parameters; i.e. (a) air gap thickness and (b) number of winding turns of a 3-phase Tubular Linear Reluctance Motor (TLRM). The aim is to optimize the electromagnetic thrust force. At first, a three-dimension TLRM structure is designed using ANSYS Maxwell 3D software Ver. 17.2. Next, the effects of the varying parameters are evaluated using Finite Element Method (FEM) analysis. The obtained results show that the variation of the air gaps and the number of winding turns greatly influence the electromagnetic thrust force. It is found that the maximum thrust force of the design TLRM is 370.3mN at 0.5mm air gap thickness and 300 numbers of winding turns.

Author Biographies

M.M. Ghazaly, Centre of Excellence of Robotics & Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka

Department of Mechatronics Engineering,

Senior Lecturer

C.K. Yeo, Centre of Excellence of Robotics & Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka

Department of Mechatronics Engineering,

Master student

I. Yusri, Centre of Excellence of Robotics & Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka

Department of Mechatronics Engineering,

Master student

References

H. J. M. T. A. Adriaens, W. L. de Koning, and R. Banning, “Modeling piezoelectric actuators,” IEEE/ASME Trans. Mechatronics, vol. 5, no. 4, pp. 331–341, 2000.

M. M. Ghazaly, L. T. Kang, C. Y. Piaw and K.Sato., “Force Optimization of an Force Artificial Muscle Actuated Underwater Probe System using Linear Motion Electrostatic Motor,” J. Teknologi, vol. 9, no. 2, pp. 113–118, 2015.

M. Markovic, M. Jufer, and Y. Perriard, “Analytical force determination in an electromagnetic actuator,” IEEE Trans. Magn., vol. 44, no. 9, pp. 2181–2185, 2008.

M. M. Ghazaly and K. Sato, “Basic characteristics of a multilayer thin electrostatic actuator supported by lubricating oil for a fine-motion stage,” Precision. Engineering, vol. 36, no..1, pp. 77–83, 2012.

J. Ji, Z. Ling, J. Wang, W. Zhao, G. Liu, and T. Zeng, “AU-03 Design and Analysis of a New Halbach Magnetized Magnetic Screw for Artificial Hearts.,” IEEE Trans. Magn., vol. 47, no. 10, p. 4480, 2015.

K. min Lee, Y. Kim, J. K. Paik, and B. Shin, “Clawed Miniature Inchworm Robot Driven by Electromagnetic Oscillatory Actuator,” J. Bionic Eng., vol. 12, no. 4, pp. 519–526, 2015.

S. C. Shen, Y. J. Wang, and M. T. Shih, “A novel dual-screen projection system using a balance-type micromirror with a piezoelectric actuator,” Sensors Actuators, A Phys., vol. 199, pp. 80–88, 2013.

J. Ponmozhi, C. Frias, T. Marques, and O. Frazao, “Smart sensors/actuators for biomedical applications: Review,” Meas. J. Int. Meas. Confed., vol. 45, no. 7, pp. 1675–1688, 2012.

S. C. Chen, H. Choi, P. T. C. So, and M. L. Culpepper, “Thermomechanical actuator-based three-axis optical scanner for high-speed two-photon endomicroscope imaging,” J. Microelectromechanical Syst., vol. 23, no. 3, pp. 570–578, 2014.

O. Felfoul, A. Becker, C. Bergeles, and P. E. Dupont, “Achieving Commutation Control of an MRI-Powered Robot Actuator,” IEEE Trans. Robot., vol. 31, no. 2, pp. 387–399, 2015.

N. Bianchi, S. Bolognani, D. D. Corte, and F. Tonel, “Tubular Linear Permanent Magnet Motors: An Overall Comparison,” IEEE Trans. Ind. Appl., vol. 2, no. 2, pp. 1266–1273, 2002.

Z. Q. Zhu and D. Howe, “Halbach permanent magnet machines and applications : a review,” IEE Proc. - Electr. Power Appl., vol. 148, no. 4, pp. 299–308, 2001.

B. Lequesne and S. Member, “Permanent Magnet Linear Motors for Short Strokes,” IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 161–168, 1996.

J. F. Pan, Y. Zou, and G. Cao, “An Asymmetric Linear Switched Reluctance Motor,” IEEE Trans. Energy Convers., vol. 28, no. 2, pp. 444–451, 2013.

B. M. Dutoit, P. A. Besse, and R. S. Popovic, “Planar multidipolar electromagnetic actuators,” IEEE Trans. Magn., vol. 39, no. 2 II, pp. 1026–1034, 2003.

S. Gibson, G. W. Jewell, and R. E. Clark, “Variable-airgap, cylindrical, linear variable reluctance actuators for high-force, medium-stroke applications,” IET Electr. Power Appl., vol. 3, no. August 2006, p. 352, 2009.

J. Lee, E. M. Dede, D. Banerjee, and H. Iizuka, “Magnetic force enhancement in a linear actuator by air-gap magnetic field distribution optimization and design,” Finite Elem. Anal. Des., vol. 58, pp. 44–52, 2012.

S. Suzuki, Y. Kawase, T. Yamaguchi, S. Kakami, K. Hirata, and T. Ota, “Dynamic Analysis Method of Spiral Resonant Actuator Using 3-D FEM,” IEEE Trans. Magn., vol. 46, no. 8, pp. 3157–3160, 2010.

A. di Gaeta, L. Glielmo, V. Giglio, and G. Police, “Modeling of an electromechanical engine valve actuator based on a hybrid analytical - FEM approach,” IEEE/ASME Trans. Mechatronics, vol. 13, no. 6, pp. 625–637, 2008.

K. Tani, T. Yamada, and Y. Kawase, “Dynamic Analysis of Linear Oscillatory Actuator Driven by Voltage Source Using FEM with Edge Elements and 3-D Mesh Coupling Method,” IEEE Trans. Magn., vol. 36, no. 4(1), pp. 1826–1829, 2000.

Downloads

Published

2017-09-29

How to Cite

Ghazaly, M., Yeo, C., Chong, S., Yusri, I., & Tee, S. (2017). Parameter Optimization of a Tubular Linear Type Reluctance Motor for High Thrust Force. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3), 117–120. Retrieved from https://jtec.utem.edu.my/jtec/article/view/1504