Illumination and Contrast Correction Strategy using Bilateral Filtering and Binarization Comparison
Keywords:
Standard Deviation, Illumination, Gaussian Filtering, ContrastAbstract
Illumination normalization and contrast variation on images are one of the most challenging tasks in the image processing field. Normally, the degrade contrast images are caused by pose, occlusion, illumination, and luminosity. In this paper, a new contrast and luminosity correction technique is developed based on bilateral filtering and superimpose techniques. Background pixels was used in order to estimate the normalized background using their local mean and standard deviation. An experiment has been conducted on few badly illuminated images and document images which involve illumination and contrast problem. The results were evaluated based on Signal Noise Ratio (SNR) and Misclassification Error (ME). The performance of the proposed method based on SNR and ME was very encouraging. The results also show that the proposed method is more effective in normalizing the illumination and contrast compared to other illumination techniques such as homomorphic filtering, high pass filter and double mean filtering (DMV).Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)