Segmentation Based on Morphological Approach for Enhanced Malaria Parasites Detection
Keywords:
Detection, Malaria, Morphological, Normalization, Segmentation,Abstract
Malaria is one of the serious medical issues in the world, with a high frequency of cases in tropical and subtropical regions; further driven by dilapidated living conditions. In 2015, there were approximately 214 million cases of malaria and 438,000 deaths estimated globally, mostly among African children. Malaria develops to become life-threatening without immediate action. Therefore, this paper proposes an image segmentation technique via morphological approach in order to automate the detection of the presence of malaria parasites in malaria image. This technique based on a combination of filtering image and the morphological operator. The effectiveness of the proposed image segmentation approach has been measured by comparing this technique with other segmentation techniques namely, Otsu, Niblack, local adaptive, and Feng methods. Overall, the experimental results indicate that the proposed morphological approach has produced the best segmentation performance with segmentation accuracy and specificity of 98.52% and 99.62%.Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)