Analysis of Distance Transforms for Watershed Segmentation on Chronic Leukaemia Images
Keywords:
Chronic Leukaemia, Distance Transform, Otsu’s Thresholding, Watershed Segmentation,Abstract
Leukaemia is a blood cancer that contributes to the increase in the world mortality rates per year. Leukaemia can be divided into two major types which are acute and chronic leukaemia. This disease is caused by the excessive production of abnormal white blood cells (WBCs); hence these cells play a major role in the screening and diagnosis of leukaemia disease. Leukaemia screening requires the complete blood count process. However, due to the cells complex nature in chronic leukaemia which is overlapped, it would be difficult to obtain the accurate number of the WBCs for the screening process. Therefore, this paper proposes an automated WBCs counting with analysis of watershed segmentation for the screening of chronic leukaemia images. The segmentation approach consists of a few steps; (1) colour conversion, (2) image segmentation, (3) noise removal and (4) separation of overlapping WBCs. In this paper, three different distance transforms for watershed segmentation known as Euclidean, city block and chessboard have been analysed in order to find the best approach which is capable of separating the overlapping WBCs. The experimental results show that segmentation using watershed based on Euclidean has successfully segmented 50 blood images with average counting accuracy of 99.81%, as compared to the city block (91.09%) and chessboard (98.78%). Thus, the proposed procedures with watershed segmentation provide an efficient alternative in enhancing the accuracy of the WBCs count for leukaemia screening.References
Z. A. Omar, Z. M. Ali, and N. S. I. Tamin, Malaysian Cancer Statistics: Data and Figure Peninsular Malaysia 2006. Malaysia: National Cancer Registry, 2006.
G.C.C. Lim, “Overview of cancer in Malaysia,” Japanese Journal of Clinical Oncology, vol. 32, pp. 37–42, Feb. 2002.
M. Ab Azizah, I.T. Nor Saleha, A. Noor Hashimah, Z.A. Asmah, W. Mastulu, Malaysian National Cancer Registry Report 2007-2011, 2016.
G.P.M. Priyankara, O.W. Seneviratne, R.K.O.H. Silva, W.V.D. Soysa, and C.R.D. Silva, An Extensible Computer Vision Application for Blood Cell Recognition and Analysis. Sri Lanka: University of Moratuwa, 2006.
C. Reta, L. Altamirano, J.A. Gonzalez, R. Diaz, and J.S. Guichard, “Segmentation of bone marrow cell images for morphological classification of acute leukaemia,” in 2010 Proceedings of the TwentyThird International Florida Artificial Intelligence Research Society Conference, pp. 86–91.
A.S. Abdul Nasir, M.Y. Mashor, and H. Rosline, “Unsupervised colour segmentation of white blood cell for acute leukaemia images,” in 2011 IEEE International Conference on Imaging Systems and Techniques, pp. 142–145.
E.A. Mohammed, B.H. Far, C. Naugler, and M.M. Mohamed, “Application of support vector machine and k-means clustering algorithms for robust chronic lymphocytic leukaemia color cell segmentation,” 2013 IEEE 15th International Conference on e-Health Networking, Applications & Services, pp. 622–626.
S. Agaian, M. Madhukar, and A.T. Chronopoulos, “Automated screening system for acute myelogenous leukaemia detection in blood microscopic images,” IEEE Systems Journal, vol. 8, pp. 995–1004, Sep. 2014.
C. Di Ruberto, A. Loddo, and L. Putzu, “A leucocytes count system from blood smear images,” Machine Vision and Applications, vol. 27, pp. 1151–1160, Nov. 2016.
N.H. Harun, M.Y. Mashor, H.N. Lim, and R. Hassan, “Automated white blood cells counting system for acute leukaemia based on blood images,”Jurnal Teknologi, vol. 78, pp. 91–98, Jan. 2016.
S. K. Nayak and N. Sampathila, “Development of a protocol for screening leukaemia from the microscopic images acquired from blood smear,”IJRET: International Journal of Research in Engineering and Technology, vol. 5, pp. 8–11, 2016.
S.D. Devi, R. Sharada, R. Shankari, T. Tamilarasi, and G. Priya, “Automatic Diagnosis of Acute Lymphoblastic Leukemia Using Duplex Method,”International Journal of Healthcare Sciences, vol. 5, pp. 14–21, 2017.
A. Khashman and E. Al-zgoul, “Image segmentation of blood cells in leukaemia patients,”Recent Advances in Computer Engineering and Applications, pp. 104–109, Jan. 2010.
N. Patel, A. Mishra, “Automated leukaemia detection using microscopic images,”Procedia Computer Science, vol. 58, pp. 635– 642, 2015.
S. Sivakumar and S. Ramesh, “Automatic white blood cell segmentation using k means clustering,”International Journal of Science and Engineering Research, vol. 3, 2015.
W. Shitong and W. Min, “A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection,”IEEE Trans. Inf. Technol. Biomed, vol. 10, pp. 5–10, 2006.
M. Ghosh, D. Das, C. Chakraborty, and A.K. Ray, “Automated leukocyte recognition using fuzzy divergence,”Micron, vol. 41, pp. 840–846, 2010.
S. Mishra, B. Majhi, P. K. Sa, and L. Sharma, “Gray level cooccurrence matrix and random forest based acute lymphoblastic leukaemia detection,”Biomedical Signal Processing and Control, vol. 33, pp. 272–280, Mar. 2017.
S. Arslan, E. Ozyurek, and C. Gunduz‐Demir,“A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images,”Cytometry Part A, vol. 85, pp. 480– 490, Jun. 2014.
Q.C.Q. Chen, X.Y.X. Yang, and E.M. Petriu, “Watershed segmentation for binary images with different distance transforms,” in Proceedings of the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications, pp. 111–116.
N. Theera-Umpon and P.D. Gader, “Training neural networks to count white blood cells via a minimum counting error objective function,” in 2000. Proceedings. 15th International Conference on Pattern Recognition, pp. 299–302.
Downloads
Published
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.