Small and Compact Double E-shaped Meander Line Monopole Antenna for Forward Scatter Radar Network

Authors

  • N. Ripin Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia.
  • M. S. M. Zaman Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia.
  • A. A. Sulaiman Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia.
  • N. E. A. Rashid Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia.
  • M. F. Hussin Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia.
  • W. Z. W. Ibrahim Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia.
  • N. N. Ismail Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia.

Keywords:

Double E-shaped Patch, Equivalent Circuit Model, FSR, Meander Line, Printed Monopole Antenna,

Abstract

A small and compact printed monopole antenna can be obtained by introducing double E-shaped meander line patch backed by a partial ground plane. The double E-shaped meander line patch reduces the antenna resonant frequency so that the size of the antenna can be reduced for targeted frequency of 400 MHz specific for Forward Scatter Radar (FSR) Network. 77% size reduction of the antenna has been successfully achieved where the overall size of the proposed antenna is only 93.8 x 131 mm2 (0.125λ0 x 0.175λ0) compared to before it was reduced which is 190.7 x 276.3 mm2 (0.25λ0 x 0.368λ0). The size reduction is obtained without significant effects on other antenna performances. The proposed antenna produces high measured efficiency of 85.5% and measured gain of 0.3 dBi with an omnidirectional radiation pattern. A comprehensive parametric study is accomplished to obtain the best performances of the antenna. For a better understanding on the design characteristics, an equivalent circuit model is derived carefully.

References

R. S. A. R. Abdullah, M. F. A. Rasid, M. W. Azis, and M. Khalafalla, “Target prediction in Forward Scattering Radar,” 2007 Asia-Pacific Conf. Appl. Electromagn., pp. 1–5, Dec. 2007.

M. Cherniakov and R. Abdullah, “Automatic ground target classification using forward scattering radar,” Radar, Sonar Navig. IEE Proc., pp. 427–437, 2006.

M. Antoniou, V. Sizov, P. Jancovic, R. Abdullah, N. E. a. Rashid, and M. Cherniakov, “The concept of a forward scattering micro-sensors radar network for situational awareness,” 2008 Int. Conf. Radar, pp. 171–176, Sep. 2008.

V. Sizov, M. Gashinova, N. E. A. Rashid, N. A. Zakaria, and P. Jancovic, “FSR sensors network: performance and parameters,” Proc. Seventh EMRS DTC Tech. Conf., no. 1, 2010.

N. E. A. Rashid, M. Antoniou, P. Jancovic, V. Sizov, R. Abdullah, and M. Cherniakov, “Automatic target classification in a low frequency FSR network,” Eur. Radar Conf. (EuRAD 2008), pp. 6–9, 2008.

S. A. H. Saghanezhad and Z. Atlasbaf, “Miniaturized Dual-Band CPW-Fed Antennas Loaded with U-Shaped Metamaterials,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 658–661, 2015.

D. Mitra, B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, “A Miniaturized Ring Slot Antenna Design With Enhanced Radiation Characteristics,” IEEE Trans. Antennas Propag., vol. 64, no. 1, pp. 300–305, 2016.

S. Das, P. Chowdhury, A. Biswas, P. P. Sarkar, and S. K. Chowdhury, “Analysis of a miniaturized multiresonant wideband slotted microstrip antenna with modified ground plane,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 60–63, 2015.

B. Kramer, C. Chen, and J. Volakis, “Size reduction of a low-profile spiral antenna using inductive and dielectric loading,” IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 22–25, 2008.

A. Amini, H. Oraizi, and M. A. Chaychi, “Miniaturized UWB LogPeriodic Square Fractal Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1322–1325, 2015.

Y. F. Weng, S. W. Cheung, and T. I. Yuk, “Design of multiple bandnotch using meander lines for compact ultra-wide band antennas,” IET Microwaves, Antennas Propag., vol. 6, no. January, p. 908, 2012.

A. K. Gautam, L. Kumar, and B. K. Kanaujia, “Design of Compact FShaped Slot Triple-Band Antenna for WLAN / WiMAX Applications,” IEEE Trans. Antennas Propagation, vol. 64, no. 3, pp. 1101–1105, 2016.

J. Malik, A. Patnaik, and M. V. Kartikeyan, “A Compact Dual-Band Antenna With Omnidirectional Radiation Pattern,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 503–506, 2015.

A. Kumar, A. Singh, and E. Sidhu, “Equivalent Circuit Modelling of Microstrip Patch Antenna (MPA) Using Parallel LCR Circuits,” Int. J. Eng. Trends Technol., vol. 25, no. 4, pp. 183–185, 2015.

P. Bansal, E. Sidhu, and S. Goyal, “Equivalent Circuit Modeling of Slotted Microstrip Patch Antenna,” Int. J. Res. Eng. Technol., pp. 2319–2322, 2014.

S. Jangid and V. S. B. Rama, “An Equivalent Circuit Modeling of UWB Patch Antenna with Band Notched Characteristics,” Eur. J. Adv. Eng. Technol., vol. 1, no. 2, pp. 75–79, 2014.

O. O. Olaode, w. D. Palmer, W. T. Joines, and L. Fellow, “Characterization of Meander Dipole Antennas With Lumped Element Model,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 346–349, 2012.

M. H. Badjian, C. K. Chakrabarty, S. Devkumar, and G. C. Hock, “Lumped element circuit model approximation of an UWB patch antenna,” in Proceedings - MICC 2009: 2009 IEEE 9th Malaysia International Conference on Communications with a Special Workshop on Digital TV Contents, 2009, no. December, pp. 28–32.

M. H. Badjian, C. K. Chakrabarty, S. Devkumar, and G. C. Hock, “Circuit modeling of an UWB patch antenna,” in 2008 IEEE International RF and Microwave Conference, RFM 2008, 2008, pp. 3–6.

Z. Sulaiman, A. A., Awang, “Monolithic Microwave Integrated Circuit Filters: Electromagnetic Simulation.” p. 61, 2009.

Downloads

Published

2018-02-05

How to Cite

Ripin, N., Zaman, M. S. M., Sulaiman, A. A., Rashid, N. E. A., Hussin, M. F., Ibrahim, W. Z. W., & Ismail, N. N. (2018). Small and Compact Double E-shaped Meander Line Monopole Antenna for Forward Scatter Radar Network. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-6), 127–132. Retrieved from https://jtec.utem.edu.my/jtec/article/view/3679