Mapping Paddy Growth Stage Based-on Hyperspectral EO-1 Hyperion Using Pixel Purity Index Endmember Extraction Algorithm


  • Hertanto Suryoprayogo Faculty of Computer Science, Brawijaya University, Malang, 65145, Indonesia.
  • Fatwa Ramdani Faculty of Computer Science, Brawijaya University, Malang, 65145, Indonesia.
  • Fitri Utaminingrum Faculty of Computer Science, Brawijaya University, Malang, 65145, Indonesia.


Endmember Extraction, Hyperspectral, Paddy, Pixel Purity Index,


Hyperspectral remote sensing is widely used in monitoring vegetation because it provides a high spatial and spectral resolution. Thus, its ability to distinguish between various objects on earth. However, many problems arise in processing Hyperspectral data. In this paper, Pixel Purity Index algorithm is used in addressing this issue. PPI is an endmember extraction method which is widely used in hyperspectral data processing because it can handle mixed pixel on large resolution images as well as reduce the dimensionality of the data. In vegetation mapping, determining the wavelength plays an important role in object reflectance analysis. In this study, paddy reflectance characteristics are examined, where results show that the characteristics of paddy occur in wavelength 447, 701, 1024, and 1104 nm. In the region of VIS-red edge (447- 701nm), curve below value of 0.1 can be used to distinguish among paddy and non-paddy vegetation reflectance, while the combination of the increase/decrease value in red edge-NIR (701-1027nm) and NIR-SWIR (1027-1104nm) range, can be used as a reference for analyzing the reflectance of rice growth, wherein the mean value of red edge-NIR can be used as predictors in distinguishing the paddy growth stage.


C. G. Karydas, “Temporal dimensions in rice crop spectral profiles,” Journal of Geomatics, Vol 10 No. 2 October 2016,

B. M. Kumar, et al., “A Hybrid Classifier for Classification of Rice Crop Varieties, “International Journal of Computer Science and Information Technologies (IJCSIT), Vol. 5 (2), 2014, 2224-2230, ISSN: 0975-9646

Badan Penelitian dan Pengembangan Pertanian (Balitbangtan), “Varietas Padi Unggulan Badan Litbang Pertanian,” Agroinovasi Sinar Tani Badan Litbang Pertanian, No.3441,25-31 Jan 2012. gulan.pdf

Shwetank, J. Kamal, B. K. Jit, “Review of Rice Crop Identification and Classification using HyperSpectral Image Processing System,” International Journal of Computer Science & Communication IJCSS Vol. 1, No. 1, January-June 2010, pp. 253-258.

M. L. Gnyp, Y. Miao, F. Yuan, et al., “Hyperspectral canopy sensing of paddy rice aboveground biomass atdifferent growth stages,” Field Crops Research, 155, 42–55, 2014, Elsevier, doi: 10.1016/j.fcr.2013.09.023

D. Haldar, R. Nigam, C. Patnaik, et al., “Remote sensing-based assessment of impact of Phailin cyclone on rice in Odisha, India, “Article in Paddy Water Environ, The International Society of Paddy and Water Environment Engineering and Springer Japan, 2016, DOI 10.1007/s10333-015-0514-y

USGS, Earth Observing–1 (EO-1) Sensor Hyperion,

J. B. Campbell, R. H. Wynne, Introduction to Remote Sensing. Fifth Edition. Guilford Press, 2013.

P. Du, K. Tan, X. Xing, “A novel binary tree support vector machine for hyperspectral remote sensing image classification,” Optics Communications 285, 2012. doi: 10.1016/j.optcom.2012.02.092

R. George, H. Padalia, S. P. S. Kushwaha., “Forest tree species discrimination in western Himalaya using EO-1 Hyperion,” International Journal of Applied Earth Observation and Geoinformation 28, 140–149, Elsevier, 2014. doi: 10.1016/j.jag.2013.11.011

F. Utaminingrum, K. Uchimuraa, G. Koutakic, “Speedy filters for removing impulse noise based on an adaptive window observation,” International Journal of Electronics and Communications (AEÜ), 95– 100, Elsevier, 2014, doi: 10.1016/j.aeue.2014.07.017

M. H. Mozaffar, M. J. V. Zoej, M. R. Sahebic, et. al., “Vegetation Endmember Extraction in Hyperion Images,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Beijing, 2008.

C. Zhang, “Multiscale quantification of urban composition from EO- 1/Hyperion data using object-based spectral unmixing”, International Journal of Applied Earth Observation and Geoinformation, 47, 153– 162, Elsevier, 2016, doi: 10.1016/j.jag.2016.01.002

R. A. Schwengerdt, Remote Sensing: Models and Methods for Image Processing., 2nd. Ed., Academic Press, 1997, p.447.

F. Chaudhry, S. Chakravarty, A. Plaza, et. al., “Design of Oast Algorithms for Pixel Purity Index for Endmember Extraction In Hyperspectral Imagery,” ASPRS 2005 Annual Conference Geospatial Goes Global: From Your Neighborhood to the Whole Planet, Baltimore, Maryland, March 7-11, 2005.

Shwetank, K. Jain, K. Bhatia, “Development of Digital Spectral Library and Supervised Classification of Rice Crop Varieties Using Hyperspectral Image Processing”, AARS, 2011.

X. Xiao, L. He, W. Salas, C. Li, B. Moore, R. Zhao, S. Frolking, S. Boles, “Quantitative relationships between field-measured leaf area index and vegetation index derived from vegetation images for paddy rice fields,” Int. J. Remote Sens, 23(18):3595-3604, 2002. [doi: 10.1080/01431160110115799]

P. S. Thenkabail, R. B. Smith, E. D. Pauw, “Hyperspectral vegetation indices and their relationships with agricultural crop characteristics,” Remote Sens. Environ., 71(2):158-182, 2000. [doi:10.1016/S0034- 4257(99)00067-X]

P. S. Thenkabail, E. A. Enclona, M. S. Ashton, B. V. D. Meer, “Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications”, Remote Sens. Environ., 91(3-4):354- 376,2004. [doi: 10.1016/j.rse.2004.03.013]

C. Gonzalez, J. Resano, D. Mozos, et. al, “FPGA Implementation of the Pixel Purity Index Algorithm for Remotely Sensed Hyperspectral Image Analysis,” EURASIP Journal on Advances in Signal Processing, Volume 2010, Article ID 969806, Hindawi Publishing Corporation, 2010. doi:10.1155/2010/969806

C. Zhang, Z. Xie, “Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery,” Remote Sensing of Environment 124, 310– 320. Elsevier, 2012. doi: 10.1016/j.rse.2012.05.015

S. Song, W. Gong, B. Zhu,, “Wavelength Selection and Spectral Discrimination for Paddy Rice with Laboratory Measurements of Hyperspectral Leaf Reflectance,” ISPRS Journal of Photogrammetry and Remote Sensing. 2011. doi: 10.1016/j.isprsjprs.2011.05.002

F. M. Wang, J. F. Huang, X. Z. Wang, “Optimal waveband identification for estimation of leaf area index of paddy rice,” Journal of Zhejiang University, SCIENCE B, ISSN 1862-1783 (Online), 2008.

K. W. Chang, Y. Shen, J. C. Lo, “Predicting Rice Yield Using Canopy Reflectance Measured at Booting Stage,” Agronomy Journal, 97: 872– 8, 2005.

C. Kuenzer, K. Knauer, “Remote sensing of rice crop areas”, International Journal of Remote Sensing, Vol. 34, No. 6, 2101–2139, 20 March 2013.

S. Moharana, S. Dutta, “Hyperspectral Remote Sensing of Paddy Crop Using In-Situ Measurement and Clustering Technique,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India, 2014.

C. H. T Daughtry, C. L. Walthall, M. S. Kim, E. B. de Colstoun, J. E. Mc-Murtrey, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance,” Remote Sensing of Environment 74, 2000 pp. 229-239.

H. W. Jeffrey, Z. Chunhua, M. K. John, “Separating Crop Species in Northeastern Ontario Using Hyperspectral Data,” Remote Sens., 6, 2014, pp. 925-945.

S. Moharanaa, H. Medhib, S. Duttaa, “Advanced vegetation indices for sensing paddy growth via hyperspectral measurements,” Geocarto International, ISSN: 1010-6049 (Print) 1752-0762 (Online), 2016, doi: 10.1080/10106049.2016.1232315

P. Barry, EO-1/Hyperion Science Data User’s Guide, Redondo Beach, CA: TRW Space, Defense & Informations Systems, 2001.

B. Datt, et al. "Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes." IEEE Transactions on Geoscience and Remote Sensing 41, No. 6: 1246-1259, 2003.

J. W. Boardman, F. A. Kruse, “Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada,”: in Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, 1994, pp. I-407-I-418.

F. Ramdani, “Urban Vegetation Mapping from Fused Hyperspectral Image and LiDAR Data with Application to Monitor Urban Tree Heights,” Journal of Geographic Information System, 2013, 5, 404- 408. doi:10.4236/jgis.2013.54038

ENVI, Advanced Hyperspectral Analysis, ITT Visual Information Solutions.

MicroImages Inc., Pixel purity index and masking aid endmember selection, TNTmips V6.10, 1999. documentation/TechGuides/61Ppi.pdf

Harris Geospatial, Pixel Purity Index Using ENVI,

Harris Geospatial., Spatial Data Reduction and Pixel Purity Index., MID/735/ArticleID/14288/Spatial-Data-Reduction-and-Pixel-PurityIndex.aspx

J. W. Boardman, “Automating spectral unmixing of AVIRIS data using convex geometry concepts,” In: Summaries of the 4th Annual JPL Airborne Geoscience Workshop, 1993, pp.11-14. pub/docs/workshops/93_docs/4.PDF

A. T. Harris, “Spectral mapping tools from the earth sciences applied to spectral microscopy data,” Cytometry, 2006, pp.872-879. doi:10.1002/cyto.a.




How to Cite

Suryoprayogo, H., Ramdani, F., & Utaminingrum, F. (2018). Mapping Paddy Growth Stage Based-on Hyperspectral EO-1 Hyperion Using Pixel Purity Index Endmember Extraction Algorithm. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-6), 47–54. Retrieved from

Most read articles by the same author(s)