The Evaluation of Potentiostats: Electrochemical Detection Devices

Authors

  • N. A. Abdul-Kadir Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Bahru, Malaysia.
  • S. Noi Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Bahru, Malaysia. Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Bahru, Malaysia.
  • F. K. Che Harun Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Bahru, Malaysia. Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Bahru, Malaysia.

Keywords:

Amperometry, Chloride and Ferrocyanide Ions, Cyclic Voltammogram, Potentiostat,

Abstract

This study evaluated the performance of three types of potentiostats; EmStat, CheapStat and UTMStat. EmStat is the smallest potentiostat available in the market. CheapStat is an open-source potentiostat suitable for educational applications. In addition, UTMStat is the extension of CheapStat, which was designed to overcome few weaknesses of CheapStat such as the input controller/ switch and data storage handling of the cyclic voltammogram. The cyclic voltammetry and amperometry measurements of ions ferrocyanide ([Fe(CN)6]4−) and chloride (Cl-) were carried out for each potentiostat. EmStat potentiostat is not only able to detect but also to measure ferrocyanide and chloride ions. However, CheapStat and UTMStat are only able to detect and measure ferrocyanide ions. The experiment is unable to be conducted due to limitation of waveform selection on both devices. Nevertheless, CheapStat and UTMStat could provide a reliable measurement to realize miniaturized lab-on-chip applications as shown in this study.

References

G. S. Wilson and M. A. Johnson, “In-vivo electrochemistry: What can we learn about living systems?,” Chem. Rev., vol. 108, pp. 2462–2481, Jul 2008.

J. C. Fidler, W. R. Penrose, and J. P. Bobis, “A potentiostat based on a voltage-controlled current source for use with amperometric gas sensors,” IEEE Trans. Instrum. Meas., vol. 41, no. 2, pp. 308–310, Apr 1992.

P. M. Levine, P. Gong, R. Levicky, and K. L. Shepard, “Active CMOS sensor array for electrochemical biomolecular detection,” IEEE J. Solid- State Circuits, vol. 43, no. 8, pp. 1859–1871, Aug 2008.

A. Bard; L. Faulkner, Electrochemical methods: fundamentals and applications. John Wiley & Sons: New York, 1980.

M. Paeschke, F. Dietrich, A. Uhlig, and R. Hintsche, “Voltammetric multichannel measurements using silicon fabricated microelectrode arrays,” Electroanalysis, vol. 8, no. 10, pp. 891–898, Oct 1996.

Ramfos, N. Vassiliadis, S. Blionas, K. Efstathiou, A. Fragoso, C. K. O’Sullivan, and A. Birbas, “A compact hybrid-multiplexed potentiostat for real-time electrochemical biosensing applications,” Biosens Bioelectron, vol. 47, pp. 482–489, Sep 2013.

M. Vergani, M. Carminati, G. Ferrari, E. Landini, C. Caviglia, A. Heiskanen, C. Comminges, K. Zor, D. Sabourin, M. Dufva, M. Dimaki, R. Raiteri, U. Wollenberger, J. Emnéus, and M. Sampietro, “Multichannel bipotentiostat integrated with a microfluidic platform for electrochemical real-time monitoring of cell cultures,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 5, pp. 498–507, Oct 2012.

M. A. Tapsak, J. G. Houseknecht, and P. V. Goode, “A low cost computer controlled and powered multichannel potentiostat for general use in development of inexpensive electrochemical sensors,” J. Instrumentation Science & Technology, vol. 35, issue 6, pp/ 589-598, Oct 2007.

F. J. Sun and J. Wang, “Development and application of virtual potentiostat on electrochemical corrosion measurement,” Acta Physico – Chim. Sin., vol. 28, no. 3, pp. 615–622, Mar 2012.

A. A. Rowe, A. J. Bonham, R. J. White, M. P. Zimmer, R. J. Yadgar, T. M. Hobza, J. W. Honea, I. Ben-Yaacov, and K. W. Plaxco, “CheapStat: An open-source, "Do-it-yourself" Potentiostat for analytical and educational applications,” PloS one, vol. 6, p. e23783, Jan 2011.

S. Hwang and S. Sonkusale, “CMOS VLSI potentiostat for portable environmental sensing applications,” IEEE Sensors J., vol. 10, no. 4, pp. 820–821, Apr 2010.

A. Gore, S. Chakrabartty, S. Pal, and E. C. Alocilja, “A multichannel femtoampere-sensitivity potentiostat array for biosensing applications,” IEEE Trans. Circuits Syst I: Regular Papers, vol. 53, no. 11, pp. 2357– 2363, Nov 2006.

R. Genov, M. Stanacevic, M. Naware, G. Cauwenberghs, and N. V. Thakor, “16-Channel integrated potentiostat for distributed neurochemical sensing,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 53, no. 11, pp. 2371–2376, Nov 2006.

Z. Shihong, G. Yong, W. Lifeng, P. Wei, W. Guohui, and D. Yinyu, “Design and realization of dc-dc converter life prediction system based on labview,” J. Convergence Information Technology, vol. 6, no. 11, pp. 300. Nov 2011.

X. Muñoz Berbel, R. Escudé-Pujol, N. Vigués, M. Cortina-Puig, C. García- Aljaro, J. Mas, and F. X. Muñoz, “Real time automatic system for the impedimetric monitoring of bacterial growth,” J. Analytical Letters, vol. 44, no. 16, pp. 2571-2581, Nov. 2011.

Han and S. Song, “A measurement system based on electrochemical frequency modulation technique for monitoring the early corrosion of mild steel in seawater,” Corrosion Science, vol. 50, no. 6, pp. 1551– 1557, Jun 2008.

Yi, Z. Feng, L. Gang, and W. Kai, “The real-time monitor system based on LabVIEW,” Int. Conf. Computer Science and Network Technology (ICCSNT), China, 2011, vol. 2, pp. 848–851.

A. Chouder, S. Silvestre, B. Taghezouit, and E. Karatepe, “Monitoring, modelling and simulation of PV systems using LabVIEW,” Solar Energy, vol. 91, pp. 337–349, May 2013.

N. Sahgal, “Monitoring and analysis of lung sounds remotely,” Int. J. Chron. Obstruct. Pulmon. Dis., vol. 6, no. 1, pp. 407–412, Jul 2011.

A. Odon and Z. Krawiecki, “LabVIEW application for computer simulation of the conversion technique of dual-slope analog-to-digital converter,” Measurement, vol. 44, no. 8, pp. 1406–1411, Oct 2011.

A. Bozatzidis, A. G. Anastopoulos, and T. Laopoulos, “Automated data acquisition setup for interfacial tension and capacitance measurements at Hg- solution contacts under LabVIEW control,” Electroanalysis, vol. 19, no. 16, pp. 1711–1718, Jul 2007.

W. Lijun, X. Long, and Z. Jianbin, “Multi-channel peripheral data acquisition system based on LabVIEW and SCM,” J. Convergence Information Technology, vol. 7, no. 22, Dec 2012.

I. A. Rojas-Olmedo, R. López-Callejas, A. de la Piedad-Beneitez, R. Valencia-Alvarado, R. Peña Eguiluz, A. Mercado-Cabrera, S. R. Barocio, A. E. Muñoz Castro, and B. G. Rodríguez-Méndez, “An automated system for DC and RF plasma characterization by guard double electric probes,” Surface and Coatings Technology, vol. 205, no. 2, pp. S397–S401, Jul 2011.

S. Noi, P. S. Chee, F. K. Che Harun, P. L. Leow, and A. Aziz, “Integration of electrochemical detection into micropumps for continuous monitoring system,” Proc. 10th Asian Control Conf. 2015 (ASCC 2015), Malaysia, 2015, pp. 1658–1662.

L. Trnkova, V. Adam, J. Hubalek, P. Babula, and R. Kizek, “Amperometric sensor for detection of chloride ions,” Sensors, vol. 8, pp. 5619–5636, Sept. 2008.

R. Dutt-Ballerstadt, C. Evans, A. P. Pillai, and A. Gowda, “A label-free fiber- optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring,” Biosens. Bioelectron., vol. 61, pp. 280–284, Nov. 2014.

I. Rodríguez-Ruiz, E. Masvidal-Codina, T. N. Ackermann, and A. Llobera, “Photonic lab-on-chip (PhLOC) for enzyme-catalyzed reactions in continuous flow,” Microfluid Nanofluidics, vol. 18, no. 5- 6, pp. 1277–1286, May 2015.

R. Ferrigno and P. Pittet, “Combining microfluidics and electrochemical detection,” Annual Int. Conf. IEEE Eng. Med. Biol. Soc, EMBC2009, Minneapolis, USA, 2009, pp. 4144–4146.

A. Nilghaz, D. H. B. Wicaksono, D. Gustiono, F. A. Abdul Majid, E. Supriyanto, and M. R. Abdul Kadir, “Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique,” Lab Chip, vol. 1, Jan 2012.

B. Tahirbegi, M. Mir, S. Schostek, M. Schurr, and J. Samitier, “In vivo ischemia monitoring array for endoscopic surgery,” Biosens. Bioelectron., vol. 61, pp. 124–130, Nov. 2014.

Hassan and M. Mashor, “A portable continuous blood pressure monitoring kit,” IEEE Symp. Business. Eng. Industrial Applications (ISBEIA) 2011, Malaysia, 2011, pp. 503–507.

R. S. Nicholson and I. Shain, “Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems,” Anal. Chem., vol. 36, no. 4, pp. 706– 723, Apr 1964.

S. W. Feldberg, “Digital simulation: a general method for solving electrochemical diffusion-kinetic problems,” Electroanalytical Chem., vol. 3, pp. 199–296, 1969.

D. K. Gosser, “Cyclic voltammetry: simulation and analysis of reaction mechanisms,” J. Synth. React. Inorg. Met-Org. Chem., vol. 24, no. 7, pp. 1235-1236, 1994.

D. Grieshaber, J. Vörös, T. Zambelli, V. Ball, P. Schaaf, J.-C. Voegel, and F. Boulmedais, “Swelling and contraction of ferrocyanidecontaining polyelectrolyte multilayers upon application of an electric potential,” Langmuir, vol. 24, no. 23, pp. 13668– 13676, Oct 2008.

T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, vol. 27, no. 15, pp. 2907–15, May 2006.

H. S. Toh, C. Batchelor-mcauley, K. Tschulik, and R. G. Compton, “Electrochemical detection of chloride levels in sweat using silver nanoparticles: A basis for the preliminary screening for cystic fibrosis,” The Analyst, vol. 138, no. 15, pp. 4292–7, 2013.

PalmSens.com ‘PalmSens Compact Electrochemical Interfaces’, [online]. Available: https://www.palmsens.com/product/emstat/. [Accessed: 21 July 2014]

J. Esswein, Y. Surendranath, S. Y. Reece, and D. G. Nocera, “Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters,” Energy Environ. Sci., issue 2, pp. 499-504, Feb 2011.

Downloads

Published

2017-12-04

How to Cite

Abdul-Kadir, N. A., Noi, S., & Che Harun, F. K. (2017). The Evaluation of Potentiostats: Electrochemical Detection Devices. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-9), 7–14. Retrieved from https://jtec.utem.edu.my/jtec/article/view/3116