MLGSA: Multi-Leader Gravitational Search Algorithm for Multi-Objective Optimization Problem

Authors

  • Mohd Riduwan Ghazali Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • Khairul Hamimah Abas Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Badaruddin Muhammad Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • Nor Azlina Ab. Aziz Faculty of Engineering and Technology, Multimedia University, 75450 Melaka, Malaysia
  • Kian Sheng Lim Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Keywords:

—About Gravitational search algorithm, multiobjective optimization,

Abstract

Recently, we have introduced Multi-Leader Particle Swarm Optimization (MLPSO) algorithm for multiobjective optimization problem. Better convergence and diversity have been observed over the conventional MultiObjective Particle Swarm Optimization. In this paper, the same concept is extended to Gravitational Search Algorithm (GSA). The performance was investigated by solving a set of ZDT test problem. An analysis was also performed by varying the value of initial gravitational constant.

References

Rashedi, E., Nezamabadi-pour, H., and Sayyazdi, S., “GSA: A Gravitational Search Algorithm”, Information Science, vol.179, no.13, 2009, pp. 2232–2248.

Ibrahim, Z., Muhammad, B., Ghazali, K.H., Kian S.L., Nawawi, S.W., and Yusof, Z.M. 2012. Vector Evaluated Gravitational Search Algorithm (VEGSA) for Multi-Objective Optimization Problems. Fourth International Conference on Computational Intelligence,Modelling and Simulation, 13-17.

Muhammad, B., Ibrahim, Z., Ghazali, K.H., Ghazali, M.R., Lim, K.S., Nawawi, S.W., Aziz, N.A.A., Mubin, M., and Mokhtar, N., “Performance Evaluation of Vector Evaluated Gravitational Search Algorithms Based on ZDT Test Functions. International Journal of Simulation – Systems”, Science and Technology, vol.15, no.1, 2014, pp.1-6.

Hassanzadeh, H.R. and Modjtaba, R., “A Multi-Objective Gravitational Search Algorithm. Second International Conference on Computational Intelligence, Communication Systems and Networks, 2010, pp.7-12.

Nobahari, H., Nikusokhan, M., and Siarry, P., “A Multi-Objective Gravitational Search Algorithm Based on Non-Dominated Sorting”,International Journal of Swarm Intelligence Research, vol.3, no.3,2012, pp.32-49.

Bhattacharya, A. and Roy, P.K., “Solution of Multi-Objective Optimal Power Flow using Gravitational Search Algorithm”, IET Generation, Transmission, and Distribution, vol.6, no.8, 2009, pp.751-763.

Ibrahim, I., Ibrahim, Z., Ahmad, H., and Yusof, Z.M. , “Rule based Multi-State Gravitational Search Algorithm for Discrete Optimization Problem”, 4th International Conference on Software Engineering and Computer Systems, 2015, pp.142-147.

Shamsudin, H.C., Irawan, A., Ibrahim, Z., Abidin, A.F.Z., Wahyudi, S., Rahim, M.A.A., and Khalil, K., “A Fast Discrete Gravitational Search Algorithm”, Fourth International Conference on Computational Intelligence, Modelling and Simulation, 2012, pp.24-28.

Sudin, S., Nawawi, S.W., Abidin, A.F.Z., Rahim, M.A.A., and Khalil, K., “A Modified Gravitational Search Algorithm for Discrete Optimization Problem”, vol.15, no.1, 2014. 51-55.

Niknam, T., Narimani, M.R., Azizipanah-Abarghooee, R., and Bahmani-Firouzi, B., “Multiobjective Optimal Reactive Power Dispatch and Voltage Control: A New Opposition-Based SelfAdaptive Modified Gravitational Search Algorithm”, IEEE Systems Journal, vol. 7, no.4, 2013, pp.742-753.

Duman, S., Sönmez, Y., Güvenc ̈ , U. and Yörükeren, N., “Optimal reactive power dispatch using a gravitational search algorithm, IET Generation, Transmission, and Distribution, vol.6, no.6, 2012, pp.563-576.

Ibrahim, I., Ibrahim, Z., Ahmad, H., Jusof, M.F.M., Yusof, Z.M., Nawawi, S.W., and Mubin, M., “An Assembly Sequence Planning Approach with a Rule-Based Multi-State Gravitational Search Algorithm”, The International Journal of Advanced Manufacturing Technology, vol.79, no.5, 2015, pp.1-14.

Ibrahim, Z., Lim, K.S., Buyamin, S., Satiman, S.N., Suib, M.H., Muhammad, B., Ghazali, M.R., Mohamad, M.S., and Watada, J., “MLPSO: Multi-Leader Particle Swarm Optimization for MultiObjective Optimization Problems”, ARPN Journal of Engineering

and Applied Sciences, vol.10, no.23, 2015, pp.17533-17538.

Alvarez-Benitez, J.E., Everson, R.M., and Fieldsend, J.E., “A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts”, Evolutionary Multi-Criterion Optimization, 2005, pp.459-473.

Zitzler, E., Deb, K., and Thiele, L., “Comparison of Multiobjective Evolutionary Algorithms: Empirical Results”, Evolutionary Computation, vol.8, no.2, 2000, pp.173-195.

Aliman, M.N., Abas, K.H., Najib, M.S., Aziz, N.A.A., Mohamad, M.S., and Ibrahim, Z., “Gravitational Search Algorithm: R is better than R2?.”, ARPN Journal of Engineering and Applied Sciences (in

press), 2015.

Ibrahim, Z., Abdul Aziz, N.H., Ab. Aziz, N.A., Razali, S., Shapiai, M.I., Nawawi, S.W., and Mohamad, M.S. A Kalman, “Filter

Approach for Solving Unimodal Optimization Problems”, ICIC Express Letters, vol.9, no.12, 2015, pp.3415-3422.

Downloads

Published

2017-03-15

How to Cite

Ghazali, M. R., Abas, K. H., Muhammad, B., Ab. Aziz, N. A., & Sheng Lim, K. (2017). MLGSA: Multi-Leader Gravitational Search Algorithm for Multi-Objective Optimization Problem. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(1-4), 119–123. Retrieved from https://jtec.utem.edu.my/jtec/article/view/1792

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.