Creating the Model of the Activity of Social Network Twitter Users


  • Igor Rytsarev Samara State Aerospace University, Samara, 443086, Russia
  • Aleksandr Blagov Samara State Aerospace University, Samara, 443086, Russia


Twitter, Big Data, Statistical Model, Social Network,


The present article is dedicated to the research in the area of analyzing text data from social network Twitter. Due to large volumes of data generated in social networks, the collection and processing of these data can be performed by means of methods and instruments of Big Data. The article describes the process of determining the most popular words and terms in social network Twitter. Based on the results drawn from the analysis of their usage, a model of user’s activity has been developed. In addition, mathematical statistics methods were used to validate the adequacy of the model.


J., Dean, S., Ghemawat. “MapReduce: simplified data processing on large clusters”, Communications of the ACM. Т. 51. №. 1. Pp. 107-113. (2008).

T.,White, Hadoop: The definitive guide. – " O'Reilly Media, Inc.", (2012).

J.S.,Ward, A., Barker . “Undefined by data: a survey of big data definitions”. (2013).

H., Wang, D., Can, A., Kazemzadeh, F., Bar, and S., Narayanan, “ A system for real-time twitter sentiment analysis of 2012 us presidential election cycle”. In Proceedings of the ACL 2012 System Demonstrations, pp. 115-120, (2012).

A., Blagov ,I., Rytcarev, K., Strelkov, M., Khotilin , “Big Data Instruments for Social Media Analysis”. Proceedings of the 5th International Workshop on Computer Science and Engineering, Pp. 179-184. (2015).

H., Saif , Y., He, H., Alani. “Alleviating data sparsity for twitter sentiment analysis”. CEUR Workshop Proceedings (CEUR-WS. org),(2012).

R., Groot . “Data mining for tweet sentiment classification. (2012).

W., Tan, M., Blake, M. B., Saleh, I., and S., Dustdar, “Socialnetwork-sourced big data analytics”. IEEE Internet Computing. №. 5. Pp. 62-69. (2013).

A., Vasilkov. How Big Data help to improve security [Electronic resource] Computerra: 2014. URL: (accessed:


A., Naydich . “Big Data: problem, technology, market” [Electronic resource] Computerra. (2012). URL:, (accessed: 14.05.2015).

D., Borthakur, J., Gray, J.S., Sarma, K., Muthukkaruppan,

N., Spiegelberg, H., Kuang, K., Ranganathan, D., Molkov, A., Menon, S., Rash, and R., Schmidt, “Apache Hadoop goes realtime at Facebook”. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data pp. 1071-1080, (2011).

P.T., Goetz , B., O'Neill. Storm blueprints: Patterns for distributed real-time computation. – Packt Publishing Ltd, 2014.

S., Wanderman-Milne ,N., Li . “Runtime Code Generation in Cloudera Impala”, IEEE Data Eng. Bull. Т. 37. №. 1. С. 31-37, (2014).

Apache Flume [Electronic resource] Hortonworks Inc. URL: (accessed: 11.05.2015).

J., Dean, S., Ghemawat . “MapReduce: simplified data processing on large clusters”, Communications of the ACM. Т. 51. №. 1. Pp. 107-113.( 2008).

K., Semertzidis, E., Pitoura ,P., Tsaparas. “How people describe themselves on Twitter”, Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks. ACM,.Pp. 25-30. (2013).

A.A., Samarskiy, A.V., Gulin. Numerical Methods Moscow.:

Science, (1989).

Kolmogorov-Smirnov test [Electronic resource] // Academician. Mathematical encyclopedia [Official website]. URL: (accessed:





How to Cite

Rytsarev, I., & Blagov, A. (2017). Creating the Model of the Activity of Social Network Twitter Users. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(1-3), 27–30. Retrieved from