Time and Frequency Domain Analysis of Memristor Based Series and Parallel RLCM Circuits

Authors

  • T.D. Dongale Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India.
  • A.R. Chavan Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India.
  • S.S. Sutar Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur 416004, India.
  • A.M. Mane Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur 416004, India.
  • Ch. K. Volos Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
  • P.K. Gaikwad Department of Electronics, Shivaji University, Kolhapur, 416004, India.
  • R.K. Kamat Department of Electronics, Shivaji University, Kolhapur, 416004, India.

Keywords:

Memristor, State Space Analysis, Pole-Zero Plots, Stability.

Abstract

The paper investigates the state space analysis of memristor based series and parallel RLCM circuits. The stability analysis was carried out with the help of eigenvalues formulation method, pole-zero plot and transient response of system. The state space analysis was successfully applied and eigenvalues of the two circuits were calculated. It was found that the system followed a negative real part of eigenvalues. The result clearly shows that addition of memristor in circuits does not alter the stability of the system. It was found that systems’ poles are located at left hand side of the S plane, which indicates a stable performance of system. It is clear that the eigenvalues have negative real part; hence the two systems are internally stable. Furthermore, the time and frequency domain resulting from both the systems suggest the stability of bounded input and bounded output (BIBO).

References

L. Chua, "Memristor-The missing circuit element," IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, no. 7191, pp. 80–83, May 2008.

T. D. Dongale, N. D. Desai, K. V. Khot, N. B. MullaniP. S. Pawar, R. S. Tikke, V. B. Patil, P. P. Waifalkar, P. B. Patil, R. K. Kamat, P. S. Patil, "Effect of surfactants on the data directionality and learning behaviour of Al/TiO2/FTO thin film memristor-based electronic synapse," J. Solid State Electr., pp.1-5, 2016, DOI: 10.1007/s10008-016-3459-1.

T. D. Dongale, K. P. Patil, S. R. Vanjare, A. R. Chavan, P. K. Gaikwad, and R. K. Kamat, "Modelling of nanostructured memristor device characteristics using artificial neural network (ANN)," J. Comput. Sci., vol. 11, pp. 82–90, Nov. 2015.

T. D. Dongale, S. V. Mohite, A. A. Bagade, P. K. Gaikwad, P. S. Patil, R. K. Kamat, K. Y. Rajpure, "Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method," Electron. Mater. Lett., vol. 11, no. 6, pp. 944–948, Oct. 2015.

T. D. Dongale, K. P. Patil, P. K. Gaikwad, and R. K. Kamat, "Investigating conduction mechanism and frequency dependency of nanostructured memristor device," Mater. Sci. Semicond. Process., vol. 38, pp. 228–233, Oct. 2015.

T. D. Dongale, K. V. Khot, S. S. Mali, P. S. Patil, P. K. Gaikwad, R. K. Kamat, P. N. Bhosale, "Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route," Mater. Sci. Semicond. Process., vol. 40, pp. 523–526, Dec. 2015.

T. D. Dongale, K. P. Patil, S. B. Mullani, K. V. More, S. D. Delekar, P. S. Patil, P. K. Gaikwad, R. K. Kamat, "Investigation of process parameter variation in the memristor based resistive random access memory (RRAM): Effect of device size variations," Mater. Sci. Semicond. Process., vol. 35, pp. 174–180, Jul. 2015.

S. S. Shinde and T. D. Dongle, "Modelling of nanostructured TiO2-based memristors," J. Semicond., vol. 36, no. 3, p. 034001, Mar. 2015.

T. D. Dongale, P. J. Patil, K. P. Patil, S. B. Mullani, K. V. More, S. D. Delekar, P. K. Gaikwad, R. K. Kamat, "Piecewise Linear and Nonlinear Window Functions for Modelling of Nanostructured Memristor Device," J. Nano. Electron. Phy., vol. 7, no. 3, pp. 03012-1-03012-4, 2015.

T. D. Dongale, P. S. Pawar, R. S. Tikke, N. B. Mullani, V. B. Patil, A. M. Teli, K. V. Khot, S. V. Mohite, A. A. Bagade, V. S. Kumbhar, K. Y. Rajpure, P. N. Bhosale, R. K. Kamat, P. S. Patil, "Mimicking the synaptic weights and human forgetting curve using hydrothermally grown nanostructured CuO memristor device," J. Nanosci. Nanotechnol., vol. 17, pp.1–8, 2017.

T. D. Dongale, K. V. Khot, S. V. Mohite, S. S. Khandagale, S. S. Shinde, V. L. Patil, S. A. Vanalkar, A. V. Moholkar, K. Y. Rajpure, P. N. Bhosale, P. S. Patil, P. K. Gaikwad, R. K. Kamat, "Investigating the Temperature Effects on ZnO, TiO2, WO3 and HfO2 Based Resistive Random Access Memory (RRAM) Devices," J. Nano. Electron. Phy., vol. 8, no. 4, pp. 04030-1-04030-4, 2016.

T. D. Dongale, P. J. Patil, N. K. Desai, P. P. Chougule, S. M. Kumbhar, P. P. Waifalkar, P. B. Patil, R. S. Vhatkar, M. V., Takale, P. K. Gaikwad, and R. K. Kamat, "TiO2 based nanostructured memristor for RRAM and neuromorphic applications: A simulation approach," Nano Convergence, vol. 3, no. 1, pp. 1-7, July 2016.

L. M. Kukreja, A. K. Das, and P. Misra, "Studies on nonvolatile resistance memory switching in ZnO thin films," Bull. Mater. Sci., vol. 32, no. 3, pp. 247–252, Jun. 2009.

Y. V. Pershin and M. Di Ventra, "Memory effects in complex materials and nanoscale systems," Adv. Phys., vol. 60, no. 2, pp. 145–227, Apr. 2011.

T. D. Dongale, S. S. Shinde, R. K. Kamat, and K. Y. Rajpure, "Nanostructured TiO2 thin film memristor using hydrothermal process," J. Alloys Compd., vol. 593, pp. 267–270, Apr. 2014.

T. Driscoll, J. Quinn, S. Klein, H. T. Kim, B. J. Kim, Y. V. Pershin, M. D. Ventra & D. N. Basov, "Memristive adaptive filters," Appl. Phys. Lett., vol. 97, no. 9, p. 093502, 2010.

A. Talukdar, A. G. Radwan, and K. N. Salama, "A memristor-based third-order oscillator: Beyond oscillation," Appl Nanosci., vol. 1, no. 3, pp. 143–145, Aug. 2011.

Y. V. Pershin and M. Di Ventra, "Practical approach to programmable analog circuits with Memristors," IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 57, no. 8, pp. 1857–1864, Aug. 2010.

Z. Kolka, D. Biolek, and V. Biolkova, "Frequency-domain steady-state analysis of circuits with mem-elements," Analog Integr. Circuits Signal Process., vol. 74, no. 1, pp. 79–89, Aug. 2012.

Y. N. Joglekar and S. J. Wolf, "The elusive memristor: Properties of basic electrical circuits," Eur. J. Phys., vol. 30, no. 4, pp. 661–675, May 2009.

M. Itoh and L. O. Chua, "Duality Of Memristor Circuits," Int J Bifurcat Chaos., vol. 23, no. 01, p. 1330001, Jan. 2013.

V. Biolkova, Z. Kolka, D. Biolek, & Z. Biolek, "Memristor modeling based on its constitutive relation," In Proc. Eur. Conf. Circuits Tech. & Devices, 2010, pp. 261–264.

H. H. C. Iu, D. S. Yu, A. L. Fitch, V. Sreeram, and H. Chen, "Controlling chaos in a Memristor based circuit using a twin-t notch filter," IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 58, no. 6, pp. 1337–1344, Jun. 2011.

S. Jameel, C. Korasli, and A. Nacaroglu, "Realization of biquadratic filter by using memristor," In IEEE Int. Conf. Tech. Adv Elect., Electro. & Comp. Eng. (TAEECE), 2013, pp. 52-56.

N. Cohen, Y. Chait, O. Yaniv, and C. Borghesani, "Stability analysis using Nichols charts," Int. J. Robust. Nonlin., vol. 4, no. 1, pp. 3–20, 1994.

Downloads

Published

2017-04-15

How to Cite

Dongale, T., Chavan, A., Sutar, S., Mane, A., Volos, C. K., Gaikwad, P., & Kamat, R. (2017). Time and Frequency Domain Analysis of Memristor Based Series and Parallel RLCM Circuits. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2), 47–51. Retrieved from https://jtec.utem.edu.my/jtec/article/view/1068

Issue

Section

Articles