Review on Human Re-identification with Multiple Cameras

Authors

  • K.B. Low Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • U.U. Sheikh Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Keywords:

Human Re-Identification, Non-Overlapping Views, Multiple Cameras,

Abstract

Human re-identification is the core task in most surveillance systems and it is aimed at matching human pairs from different non-overlapping cameras. There are several challenging issues that need to be overcome to achieve reidentification, such as overcoming the variations in viewpoint, pose, image resolution, illumination and occlusion. In this study, we review existing works in human re-identification task. Advantages and limitations of recent works are discussed. At the end, this paper suggests some future research directions for human re-identification.

References

B. Prosser, W.-S. Zheng, S. Gong, and T. Xiang, “Person ReIdentification by Support Vector Ranking,” Bmvc, vol. 1, no. 3, p. 21.1 -21.11, 2010.

M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani, “Person re-identification by symmetry-driven accumulation of local features,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2360–2367, 2010.

W.-S. Zheng, S. Gong, and T. Xiang, “Re-identification by Relative Distance Comparison,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 3, pp. 653–668, 2013.

D. Gray and H. Tao, “Viewpoint Invariant Pedestrain Recognition with an Ensemble of Localized Features,” Eur. Conf. Comput. Vis., pp. 262–275, 2008.

X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu, “Shape and Appearance Context Modeling,” Int. Conf. Comput. Vis., pp. 1–8, 2007.

W. R. Schwartz and L. S. Davis, “Learning discriminative appearancebased models using partial least squares,” Brazilian Symp. Comput. Graph. Image Process., pp. 322–329, 2009.

L. B. and V. M. Dong Seon Cheng, Marco Cristani, Michele Stoppa, “Custom Pictorial Structures for Re-identification,” Bmvc, p. 68.1--68.11, 2011.

C. C. Loy, C. Liu, and S. Gong, “Person Re-identification by Manifold Ranking,” IEEE Int. Conf. Image Process., 2013.

Kang, I. Cohen, and G. Medioni, “Object reacquisition using invariant appearance model,” Proc. - Int. Conf. Pattern Recognit., vol. 4, pp. 759–762, 2004.

Y. Yu, D. Harwood, K. Yoon, and L. S. Davis, “Human appearance modeling for matching across video sequences,” Mach. Vis. Appl., vol. 18, no. 3–4, pp. 139–149, 2007.

A. C. Gallagher and T. Chen, “Clothing cosegmentation for recognizing people,” 26th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR, 2008.

S. Bak, E. Corvee, F. Bremond, and M. Thonnat, “Person Reidentification Using Spatial Covariance Regions of Human Body Parts,” Int. Conf. Adv. Video Signal Based Surveill., pp. 435–440, 2010.

Y. Cai, K. Huang, and T. Tan, “Human appearance matching across multiple non-overlapping cameras,” Icpr, pp. 1–4, 2008.

Lin, Z. Lin, L. S. Davis, and L. S. Davis, “Learning Pairwise Dissimilarity Profiles for Appearance Recognition in Visual

Surveillance,” Adv. Vis. Comput., pp. 23–34, 2008.

S. Bk, E. Corvee, F. Bremond, M. Thonnat, S. Ba̧ k, E. Corvee, F. Brémond, and M. Thonnat, “Person Re-identification Using Haar-based and DCD-based Signature,” 2010 7th IEEE Int. Conf. Adv. Video Signal Based Surveill., pp. 1–8, 2010.

D. Figueira, L. Bazzani, H. Q. Minh, M. Cristani, A. Bernardino, and V. Murino, “Semi-supervised multi-feature learning for person reidentification,” Avss, 2013.

M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, “Large Scale Metric Learning from Equivalence Constraints,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., no. March, pp. 2288–2295, 2012.

W. S. Zheng, S. Gong, and T. Xiang, “Person Re-identification by Probabilistic Relative Distance Comparison,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 3, pp. 653–668, 2013.

M. Dikmen, E. Akbas, T. S. Huang, and N. Ahuja, “Pedestrian recognition with a learned metric,” Proc. Asian Conf. Comput. Vision,2010, pp. 501–512, 2011.

M. Hirzer, P. M. Roth, and H. Bischof, “Person re-identification by efficient impostor-based metric learning,” Proc. - 2012 IEEE 9th Int. Conf. Adv. Video Signal-Based Surveillance, AVSS 2012, pp. 203–208, 2012.

Y. Ijiri and S. Lao, “Human Re-Identification Through Distance Metric Learning Based on Jensen-Shannon Kernel,” Visapp, no. c, pp. 603–612, 2012.

R. Layne, T. Hospedales, and S. Gong, “Towards Person Identification and Re-identification with Attributes,” ECCV Work. 2012, vol. 7583, pp. 402–412, 2012.

R. Zhao, W. Ouyang, and X. Wang, “Unsupervised salience learning for person re-identification,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 3586–3593, 2013.

R. Satta, G. Fumera, F. Roli, M. Cristani, and V. Murino, “A multiple component matching framework for person re-identification,” Int. Conf. Image Anal. Process., pp. 2360–2367, 2011.

M. Hirzer, P. M. Roth, M. Koestinger, and H. Bischof, “Relaxed Pairwise Learned Metric for Person Re-identification,” Comput. Vis. -Eccv 2012, Pt Vi, vol. 7577, pp. 780–793, 2012.

N. Gheissari, T. B. Sebastian, P. H. Tu, J. Rittscher, and R. Hartley, “Person reidentification using spatiotemporal appearance,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2, pp. 1528–1535, 2006.

O. Hamdoun, F. Moutarde, B. Stanciulescu, and B. Steux, “Person Reidentification In Multi-camera System By Signature Based On Interest Point Descriptors Collected On Short Video Sequences,” Robotics, pp. 0–5, 2008.

L. Bazzani, M. Cristani, A. Perina, M. Farenzena, and V. Murino, “Multiple-shot person re-identification by HPE signature,” Proc. - Int. Conf. Pattern Recognit., pp. 1413–1416, 2010.

L. Bazzani, M. Cristani, A. Perina, and V. Murino, “Multiple-shot Person Re-identification by Chromatic and Epitomic Analyses,” Pattern Recognit. Lett., vol. 33, no. 7, pp. 898–903, 2012.

D. N. T. Gong, C. Achard, L. Khoudour, and L. Douadi, “Video Sequences Association for People Re-identification across Multiple Non-overlapping Cameras,” Image Anal. Process. - Iciap 2009, Proc., vol. 5716, pp. 179–189, 2009.

D. N. Truong Cong, L. Khoudour, C. Achard, C. Meurie, and O. Lezoray, “People re-identification by spectral classification of

silhouettes,” Signal Processing, vol. 90, no. 8, pp. 2362–2374, 2010.

F. Ma, B., Su, Y. and Jurie, “Local Descriptors Encoded by Fisher Vectors for Person Re-identification,” Comput. Vis. – ECCV 2012, pp. 413–422, 2012.

A. Bedagkar-Gala and S. K. Shah, “Part-based spatio-temporal model for multi-person re-identification,” Pattern Recognit. Lett., vol. 33, no.14, pp. 1908–1915, 2012.

B. Ma, Y. Su, and F. Jurie, “BiCov: a novel image representation for person re-identification and face verification,” Procedings Br. Mach. Vis. Conf. 2012, p. 57.1-57.11, 2012.

S. Bak, E. Corvée, F. Brémond, M. Thonnat, and I. S. Antipolis, “Boosted Human Re-identication using Riemannian Manifolds,” Image Vis. Comput., pp. 443–452, 2012.

S. Ba̧ k, E. Corvee, F. Brémond, and M. Thonnat, “Multiple-shot human Re-identification by Mean Riemannian Covariance Grid,” 2011 8th IEEE Int. Conf. Adv. Video Signal Based Surveillance, AVSS 2011, pp. 179–184, 2011.

W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep filter pairing neural network for person re-identification,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 152–159, 2014.

D. Yi, Z. Lei, and S. Z. Li, “Deep Metric Learning for Practical

Person Re-Identification,” Icpr, vol. 11, no. 4, pp. 1–11, 2014.

G. Zhang, J. Kato, Y. Wang, and K. Mase, “People re-identification using deep convolutional neural network,” VISAPP 2014 - Proc. 9th Int. Conf. Comput. Vis. Theory Appl., vol. 3, pp. 216–223, 2014.

E. Ahmed, M. Jones, and T. K. Marks, “An Improved Deep Learning Architecture for Person Re-Identification,” IEEE Conf. Comput. Vis. Pattern Recognit., 2015.

L. Wu, C. Shen, and A. van den Hengel, “PersonNet: Person Reidentification with Deep Convolutional Neural Networks,” CoRR abs/1601.07255, 2016.

U. Park, A. K. Jain, I. Kitahara, K. Kogure, and N. Hagita, “ViSE: Visual Search Engine Using Multiple Networked Cameras,” 18th Int. Conf. Pattern Recognit., vol. 3, pp. 1204–1207, 2006.

G. L. Prado, W. R. Schwartz, and H. Pedrini, “Person re-identification using partial least squares appearance modeling,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8259 LNCS, no. PART 2, pp. 382–390, 2013.

J. Sivic, C. L. Zitnick, and R. Szeliski, “Finding people in repeated shots of the same scene,” Procedings Br. Mach. Vis. Conf. 2006, p. 93.1-93.10, 2006.

J. Sivic, C. L. Zitnick, and R. Szeliski, “Finding people in repeated shots of the same scene,” Procedings Br. Mach. Vis. Conf. 2006, p. 93.1-93.10, 2006.

N. D. Bird, O. Masoud, N. P. Papanikolopoulos, and A. Isaacs, “Detection of loitering individuals in public transportation areas,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 2, pp. 167–177, 2005.

O. Oreifej, R. Mehran, and M. Shah, “Human Identity Recognition In Aerial Images,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 709–716, 2010.

T. P. Chikahito nakajima, massimiliano Pontil, Bernd Heisele, “FullBody Person Recognition System,” Pattern Recognit., vol. 34, 2004.

S. Ba̧ k, G. Charpiat, E. Corvée, F. Brémond, and M. Thonnat, “Learning to Match Appearances by Correlations in a Covariance Metric Space,” Proc. 12th Eur.Conf. Comput., pp. 806–820, 2012.

Y. Wu, M. Minoh, M. Mukunoki, and S. Lao, “Set Based Discriminative Ranking for Recognition,” Proc. 12th Eur. Conf. Comput. Vis, pp. 497–510, 2012.

P. Salvagnini, L. Bazzani, M. Cristani, and V. Murino, “Person Reidentification with a PTZ Camera: An Introductory Study,” CIP, 2013.

Downloads

Published

2016-12-01

How to Cite

Low, K., & Sheikh, U. (2016). Review on Human Re-identification with Multiple Cameras. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(9), 89–95. Retrieved from https://jtec.utem.edu.my/jtec/article/view/924