A Review of Downhole Communication Technologies


  • Augustus E. Ibhaze Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria
  • Deborah O. Akinola Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria
  • Agbotiname Lucky Imoize Department of Electrical Engineering and Information Technology, Institute of Digital Communication, Ruhr University, 44801 Bochum, Germany.
  • Patience E. Orukpe Department of Electrical and Electronics Engineering, University of Benin, Benin City 300283, Nigeria.
  • Frederick O. Edeko Department of Electrical and Electronics Engineering, University of Benin, Benin City 300283, Nigeria.


Data Rate, Downhole, Drill Pipe, Electromagnetic, Telemetry, Visible Light Communication , Wireless Communication


Different telemetry techniques have been tested and used in the oil and gas industry to acquire data via downhole monitoring. However, the rate at which conventional telemetry systems transmit data is low. In order to address this problem, some telemetry techniques have been proposed. The wired and wireless drill pipes are among the contending classifications of telemetry techniques used in downhole monitoring. This review provides an in-depth overview of the existing and researched methods of downhole monitoring by highlighting their particular challenges and innovations for which the wireless drill pipe based on visible light communication techniques proves to be promising as an optimal telemetry technique. The review will guide future research studies in the common area of interest in downhole monitoring. The study will contribute significantly to the oil and gas industry by investigating the effectiveness of emerging technologies such as visible light communication technology in transmitting data at a very high rate compared to the existing telemetry techniques.


E. S. A. Ahmed, (2015). Introduction to Communication Systems: Communication Model, transmitting Line, and Data Communication, Ed. Port Sudan: CreateSpace Independent Publishing Platform.

E. Lemenager, D. Merlau, A. Mohan, (2013). Downhole Communication System, JUSTIA Patents, 20130128697.

A. E. Ibhaze, P. E. Orukpe and F. O. Edeko, (2020). High Capacity Data Rate System: Review of Visible Light Communications Technology,” Journal of Electronic Science and Technology, Vol. 18, No.3, https://doi.org/10.1016/j.jnlest.2020.100055.

P.H. Pathak, X.-T. Feng, P.-F. Hu, P. Mohapatra, (2015). Visible light communication, networking, and sensing: a survey, potential and challenges, IEEE Commun. Survey Tutorial vol. 17 no. 4, pp. 2047–2077.

H. Bhasin, (2021). Communication Systems – Types and Elements, marketing91.com, 2021. [Online]. Available: https://www.marketing91.com/communication-systems/. [Accessed: 11-Jan-2022].

J. Lian, Z. Vatansever, M. Noshad and M. Brandt-Pearce, (2019). Indoor visible light communications, networking, and applications, Journal of Physics: Photonics, vol. 1, no. 1, pp. 1 – 28.

International Association of Drilling Contractors (IADC), (2022). Downhole telemetry,” drillingmatters.iadc.org. [Online]. Available: https://drillingmatters.iadc.org/glossary/downhole-telemetry/. [Accessed: 27-Jan-2022].

W. C. Lyons, J. H. Stanley, F. J. Sinisterra and T. Weller, (2020). Air and Gas Drilling Manual - Applications for Oil, Gas, Geothermal Fluid Recovery Wells, Specialized Construction Boreholes, and the History and Advent of the Directional DTH,” Elsevier Inc., https://doi.org/10.1016/C2017-0-02316-9.

I. N. de Almeida. Jr., P. D. Antunes, F. O. C. Gonzalez, R. A. Yamachita, A. Nascimento, and J. L. Goncalves, (2015). A Review of Telemetry Data Transmission in Unconventional Petroleum Environments Focused on Information Density and Reliability, Journal of Software Engineering and Applications, vol. 8, no. 9, pp. 455–462, doi: 10.4236/jsea.2015.89043.

M. J. Berro and M. Reich, (2016). Review of Commercial Telemetry Systems for Real Time Data Transmission in Boreholes, SPE International-German Section. Student Technical Conference, Wietze, Germany, 3rd -4th November, 2016,

I. Wasserman, D. Hahn, D. H. Nguyen, H. Reckmann, and J. Macpherson, (2008). Mud-pulse telemetry sees step-change improvement with oscillating shear valves, Oil and gas Journal, vol. 106, no. 24, pp. 39–40.

K. Bybee, (2008). High-Speed Wired-Drillstring Telemetry, Journal of Petroleum Technology, vol. 60, no. 12, pp. 76–78, doi: 10.2118/1208-0076-JPT.

D. K. Trichel, M. Isbell, B. Brown, M. Flash, M. McRay, J. Nieto, I. Fonseca, (2016). Using wired drill pipe, high-speed downhole data, and closed loop drilling automation technology to drive performance improvement across multiple wells in the Bakken, IADC/SPE Drilling Conference and Exhibition, Fort Worth, Texas, USA, doi: 10.2118/178870-ms.

L. Zheng, J. Yu, Q. Yang, Y. Gao, and F. Sun, (2017). Vibration wave downhole communication technique, Petroleum Exploration and Development, vol. 44, no. 2, pp. 321–327, doi: 10.1016/S1876-3804(17)30037-X.

A. E. Ibhaze, P. E. Orukpe and F. O. Edeko, (2020). Visible Light Channel Modeling for High-data Transmission in the Oil and Gas Industry, Journal of Science and Technology, Vol. 12, No. 2, pp.46 - 54.

C. John, (2021). Visible Light Communication-History, Working & Applications, www.circuitstoday.com. [Online]. Available: https://www.circuitstoday.com/visible-light-communication. [Accessed: 13-Mar-2021].

L. Zeng, D. C. O’Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, (2009). High data rate Multiple Input Multiple Output (MIMO) optical wireless communications using white LED lighting, IEEE Journal on Selected Areas in Communications, vol. 27, no. 9, pp. 1654–1662, doi: 10.1109/JSAC.2009.091215.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, (2014). A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μ LED, IEEE Photonics Technology Letter, vol. 26, no. 7, pp. 637–640, doi: 10.1109/LPT.2013.2297621.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, Member, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, (2016). High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications, IEEE Photonics Technology Letter, vol. 28, no. 19, pp. 2023–2026, doi: 10.1109/LPT.2016.2581318.

John Hunter, (2017). Comparison of Current Wireless Downhole Telemetry, www.tendeka.com, [Online]. Available: https://www.tendeka.com/news/comparison-of-current-wireless-downhole-telemetry/. [Accessed: 11-Oct-2021].

A. K. Farraj, S. L. Miller, and K. A. Qaraqe, (2013). Propagation measurements for acoustic downhole telemetry systems, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September 2013, doi: 10.2118/166131-ms.

J. Chen, S. Li, C. MacMillan, G. Cortes, and D. Wood, (2015). Long range electromagnetic telemetry using an innovative casing antenna system, SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, September 2015, doi: 10.2118/174821-ms.

F. Miramirkhani, M. Uysal, O. Narmanlioglu, M. Abdallah, and K. Qaraqe, (2018). Visible Light Channel Modeling for Gas Pipelines, IEEE Photonics Journal., vol. 10, no. 2, pp. 1–10, doi: 10.1109/JPHOT.2018.2819723.

Y. Li, S. Videv, M. Abdallah, K. Qaraqe, M. Uysal, and H. Haas, (2014). Single photon avalanche diode (SPAD) VLC system and application to downhole monitoring, in IEEE Global Communications Conference, pp. 2108–2113, doi: 10.1109/GLOCOM.2014.7037119.

M. S. Nithin, (2015). Enhancing Directional Drilling using Wired Drill Pipe Telemetry, Teesside University.

P. Cote, (2019). Downhole RF Communication: Characterization and Modeling of Waveguide Propagation in a Fluid-Filled Drill Pipe, Montana Technological University.

N. G. Franconi, A. P. Bunger, E. Sejdić, and M. H. Mickle, (2014). Wireless Communication in Oil and Gas Wells, Energy Technology, vol. 2, no. 12, pp. 996–1005, doi: 10.1002/ente.201402067.

R. Desbrandes, (1988). Status report: MWD technology. Part 2. Data transmission, Pet. Eng. Int., vol. 60, no. 10, pp. 48–54.

R. F. Harrington, (2001). Time-Harmonic Electromagnetic Fields, Wiley-IEEE Press.

W. R. Gardner, R. E. Hyden, E. J. Linyaev, L. Gao, C. Robbins, and J. Moore, (2006). Acoustic Telemetry Delivers More Real-Time Downhole Data in Underbalanced Drilling Operations, in IADC/SPE Drilling Conference, Miami, Florida, USA, February 2006, doi: 10.2118/98948-MS.

A. Rodriguez, C. MacMillan, C. Maranuk, and J. Watson, (2013). Innovative Technology to Extend EM-M/LWD Drilling Depth, in SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September 2013, doi: 10.2118/166190-MS.

L. U. Khan, (2017). Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, vol. 3, no. 2, pp. 78–88, doi: 10.1016/j.dcan.2016.07.004.

S. Hranilovic, L. Lampe, and S. Hosur, (2013). Visible light communications: the road to standardization and commercialization (Part 1), IEEE Communications Magazine., vol. 51, no. 12, pp. 24–25, doi: 10.1109/MCOM.2013.6685753.

IEEE-SA Standards Board, (2019). 802.15.7-2018 - IEEE Standard for Local and metropolitan area networks--Part 15.7: Short-Range Optical Wireless Communications, IEEE.

C. Hongda, W. Chunhui, L. Honglei, C. Xiongbin, G. Zongyu, C. Shigang, and W. Qin, (2016). Advances and prospects in visible light communications, Journal of Semiconductors, vol. 37, no. 1, pp. 011001-1 - 011001-10. doi: 10.1088/1674-4926/37/1/011001.

A. E. Ibhaze, F. O. Edeko and P. E. Orukpe, (2021). Comparative Analysis of Optical Multicarrier Modulations: An Insight into Machine Learning-based Multicarrier Modulation, Gazi University Journal of Science, Vol. 34, No. 4, pp.1016-1033.

A. E. Ibhaze, F. O. Edeko and P. E. Orukpe, (2020). A Signal Amplification-based Transceiver for Visible Light Communication, Journal of Engineering, Vol. 11, No. 26, pp.123 - 132.

A. E. Ibhaze, P. E. Orukpe and F. O. Edeko, (2020). A Simplified Approach for Single Carrier Visible Light Communication Transceiver using off-the-shelf Components, Applied Research and Smart Technology, Vol. 1, No. 2, pp.64-70.

Y. Ohno, (2017). Solid State Lighting Annex: Task 1: Application Study of CIE S 025/E: 2015, Energy Efficient End-use Equipment (4E) International Energy Agency.

W. O. Popoola, (2016). Impact of VLC on Light Emission Quality of White LEDs, Journal of Lightwave Technology, vol. 34, no. 10, pp. 2526–2532, doi: 10.1109/JLT.2016.2542110.

M. Figueiredo, L. N. Alves, and C. Ribeiro, (2017). Lighting the Wireless World: The Promise and Challenges of Visible Light Communication, IEEE Consumer Electronics Magazine, vol. 6, no. 4, pp. 28–37, doi: 10.1109/MCE.2017.2714721.

Infinium, (2022). Visible Light Communication Market, www.infiniumglobalresearch.com [Online]. Available: https://www.infiniumglobalresearch.com/automotive/global-visible-light-communication-market. [Accessed: 04-February-2022].

A. E. Ibhaze, F. O. Edeko and P. E. Orukpe, (2021). A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol. 25, No. 2, pp.269-282.

S. Aguilar and A. Hawthorn, (2017). Downhole real time wireless telemetry system applications in deepwater completions in the Gulf of Mexico, Offshore Technology Conference, Houston, Texas, USA, May 2017, doi: 10.4043/27836-ms.

A. Hawthorn and S. Aguilar, (2017). New wireless acoustic telemetry system allows real-time downhole data transmission through regular drillpipe, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, October 2017, doi: 10.2118/187082-ms.

D. Ma, Y. Shi, W. Zhang, and G. Liu, (2018). Design of acoustic transmission along drill strings for logging while drilling data based on adaptive NC-OFDM, AEU - International Journal of Electronics and Communications, vol. 83, pp. 329–338, doi: 10.1016/j.aeue.2017.08.035.

G. Geoffroy, G. Werkheiser, M. Coffin, K. King, and T. Frosell, (2018). Two-way acoustic telemetry for completion installation, control, and monitoring, SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, September 2018, doi: 10.2118/191439-ms.

A. Redissi, (2019). Communication Systems Design for Downhole Acoustic, Texas A&M University.

Y. Shin, (2019). Signal attenuation simulation of acoustic telemetry in directional drilling, Journal of Mechanical Science and Technology, vol. 33, no. 11, pp. 5189–5197, doi: 10.1007/s12206-019-1008-4.

A. H. Alenezi, (2018). Borehole communication via drill strings in oil, New Jersey Institute of Technology.

W. Emmerich, O. Akimov, I. B. Brahim, and A. Greten, (2015). Reliable high-speed mud pulse telemetry, SPE/IADC Drilling Conference and Exhibition, London, England, UK, March 2015, doi: 10.2118/173032-ms.

W. Emmerich, O. Akimov, I. B. Brahim, and A. Greten, (2016). Field performance of automated high-speed mud pulse telemetry system, IADC/SPE Drilling Conference and Exhibition, January 2016, doi: 10.2118/178871-ms.

Z. Yan, Y. Geng, C. Wei, T. Wang, T. Gao, J. Shao, X. Hu, and M. Yuan, (2018). Design of a continuous wave mud pulse generator for data transmission by fluid pressure fluctuation, Flow Measurement and Instrumentation, vol. 59, pp. 28–36, doi: 10.1016/j.flowmeasinst.2017.11.008.

M. J. Berro and M. Reich, (2019). Laboratory investigations of a hybrid mud pulse telemetry (HMPT) – A new approach for speeding up the transmitting of MWD/LWD data in deep boreholes, Journal of Petroleum Science and Engineering, vol. 183, doi: 10.1016/j.petrol.2019.106374.

J. Miaoxin, G. Qiang, and X. Dianguo, (2013). A downhole multi-parameter monitoring system, Proc. - 3rd International Conference on Instrumentation, Measurement, Computer, Communication and Control, pp. 1660–1663, doi: 10.1109/IMCCC.2013.367.

K. Liu, (2020). Model and control method of a downhole electromagnetic transmitter for EM-MWD system, Journal of Petroleum Science and Engineering, vol. 192, pp. 107210, doi: 10.1016/j.petrol.2020.107210.

K. Zhao and D. Sui, (2015). Drilling data quality control via wired drill pipe technology, Chinese Control Conference, pp. 7883–7888, doi: 10.1109/ChiCC.2015.7260892.

M. Giltner, L. Earle, J. Willis, D. Tellez, and R. Neel, (2019). Performance impact of downhole data from wired drill pipe and downhole sensors, SPE/IADC International Drilling Conference and Exhibition, The Hague, The Netherlands, March 2019, doi: 10.2118/194093-ms.

I. Silvester, T. Høgset, S. Torvund, and S. Saxena, (2020). Qualification & testing of a powered wired drill pipe solution, IADC/SPE International Drilling Conference and Exhibition, Galveston, Texas, USA, March 2020, doi: 10.2118/199604-ms.

A.E. Ibhaze, A. L. Imoize, O. Okoyeig-bo, (2022). A brief Overview of Energy Efficiency Resources in Wireless Communication Systems, Telecom, vol. 3, pp. 281–300.

S. C. Tokgoz, S. L. Miller, and K. A. Qaraqe, (2020). On the Investigation of Achievable Links for VLC based Wireless Downhole Telemetry Systems, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), doi: 10.1109/BlackSeaCom48709.2020.9234990.

S. S. Morapitiya, D. N. K. Jayakody, and R. U. Weerasuriya, (2020). Visible Light Communication for Downhole Monitoring Visible Light Communication for Downhole Monitoring View project Visible Light Communication for Downhole Monitoring, 12th International Research Conference- General Sir John Kotelawala Defence University, pp. 1–6.




How to Cite

E. Ibhaze, A., O. Akinola, D. ., Lucky Imoize, A. ., E. Orukpe, P. ., & O. Edeko, F. . (2022). A Review of Downhole Communication Technologies. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 14(4), 1–10. Retrieved from https://jtec.utem.edu.my/jtec/article/view/6186