Reliability and Performance Analysis of a Fault Tolerant Data Handling Protocol for Aerospace Applications
Keywords:
Communication satellite, Data Handling, Space Radiation Faults, Reliability, Controller Area Network (CAN)Abstract
Data communication inside the satellite is one of the most important factors in satellite design. For this purpose, a variety of protocols have been developed in recent years. Controller Area Network (CAN) is one of the well-developed protocols to be used in the On-Board Data Handling (OBDH) systems for communication and geosynchronous satellites. Nonetheless, for aerospace applications which demand radiation hardened integrated circuits, a full featured stand-alone Rad-Hard CAN controller is unavailable. HDL (Hardware Description Language) based IP(Intellectual Property) Cores which are widely developed to be implemented on Rad-Hard FPGAs are more attractive. This paper proposes a novel fault tolerant CAN controller based on FPGAs to provide on-board data handling requirements of the communication satellites. We outline some practical topologies and discuss their complexities and reliability. Despite the fact that the most famous methods like TMR (Triple Modular Redundancy), are very common among designers, the reliability analyses show that these methods are unable to tolerate single upsets in routing matrixes. This paper proposes a robust data bus controller based on dual duplex redundancy on FPGAs. The fault injection experiments reveal that the proposed approach represents better performance respective to the conventional hardware redundancy. Furthermore, the experiments show that the capability of tolerating SEU effects by the proposed method is increased up to 7.17 times with respect to a regular design. The proposed architecture imposes 16.26% and 5.2% overhead in the required resources and the operating frequency in comparison to the regular TMR method.Downloads
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.