The Performances of Environmental Control Systems to Hydroponics Agriculture Based on Microcontroller

Authors

  • Enceng Sobari State Polytechnic of Subang, Indonesia
  • Dwi Vernanda State Polytechnic of Subang, Indonesia enceng@polsub.ac.id
  • Nunu Nugraha Purnawan State Polytechnic of Subang, Indonesia
  • Tri Herdiawan Apandi State Polytechnic of Subang, Indonesia
  • Muhammad Aliyawan Aris State Polytechnic of Subang, Indonesia

Keywords:

Agriculture, Control System, Environment, Hydroponics, Microcontroller,

Abstract

Hydroponic cultivation is one of the common modern farming systems. The effectiveness of the agricultural system refers to the appropriate environmental factors that can be controlled such as temperature, humidity, light intensity, and concentration of solutions that support the growth of cultivated plants. Hydroponic farming will develop increasingly as long as it is supported by technological aspects that are able to control the environmental factors automatically. The objective of this research is to come up with a device that can measure environmental factors as indicators of hydroponic farming using a microcontroller-based controller system. The method used is the measurement test method, which consists of testing the parameters of air temperature, humidity, water temperature, light intensity, nutrient concentration, and pump work, which are then reviewed by literature studies. The results showed that the air temperature sensor (DHT11) had an average temperature accuracy of 22.7-25.3 oC, the humidity sensor (RH) had an average accuracy of 50% - 73.6%. Light intensity sensor (BH1750) averaged to 1289 lx. While the solution of height sensor (HC-SR04) was able to read a 25% decrease in solution for 1 week. Moreover, nutrition concentration sensor testing (TDS Probe) provided an accuracy of the average nutritional concen-tration of 1493 ppm for 24 hours.

References

N. L. G. Budihari, I. N. Suditha, and M. Suryadi, “Perubahan Fungsi Lahan Pertanian Menjadi Perumahan Berdampak Terhadap Sosial Ekonomi Di Desa Bongan Kecamatan Kediri Kabupaten Tabanan,” J. Pendidik. Geogr., vol. 2, no. 1, pp. 1–10, 2014.

E. R. Kaburuan, R. Jayadia, and Harisno, “A Design of IoT-based Monitoring System for Intelligence Indoor Micro-Climate Horticulture Farming in Indonesia,” in Procedia Computer Science, 2019, vol. 157, pp. 459–464.

M. Mehra, S. Saxena, S. Sankaranarayanan, R. J. Tom, and M. Veeramanikandan, “IoT Based Hydroponics System Using Deep Neural Networks,” Comput. Electron. Agric., vol. 155, no. October, pp. 473–486, 2018.

G. Pamungkas, A. Z. Purwalaksana, M. Djamal, and N. S. Amina, “Rancang Bangun Hidroponik Sistem Nutrient Film Technique Otomatis Berbasis Arduino,” in Prosiding Snips 2017, 2017, pp. 45– 51.

F. X. Rius-ruiz, F. J. Andrade, J. Riu, and F. X. Rius, “Computeroperated Analytical Platform for The Determination of Nutrients in Hydroponic Systems,” Food Chem., vol. 147, pp. 92–97, 2014.

G. Barbon, M. Margolis, F. Palumbo, F. Raimondi, and N. Weldin, “Taking Arduino to the Internet of Things: The ASIP Programming Model,” Comput. Commun., vol. 89–90, pp. 128–140, 2016.

Fiqhi, Y. Prabowo, and G. Gata, “Sistem Aeroponik Berbasis Arduino Uno dan Komunikasi GSM Untuk Pemberian Larutan Nutrisi Untuk Budidaya Sayuran,” J. Rekayasa Sist. dan Teknol. Inf., vol. 1, no. 2, pp. 153–159, 2017.

V. Palande, A. Zaheer, and K. George, “Fully Automated Hydroponic System for Indoor Plant Growth,” in Procedia Computer Science, 2018, vol. 129, pp. 482–488.

S.Boorboor and M. Khorsandi, “Development of a Single-chip Digital Radiation Spectrometer Based on ARM Cortex-M7 Microcontroller Unit,” Nucl. Inst. Methods Phys. Res. A, vol. 946, pp. 1–6, 2019.

R. R. Kanchia and N. K. Uttarkar, “Design and Development of a Semiconductor Bandgap Mesurement System Using Microcontroller : MSP430G2553 and ZigBee : CC2500,” in Materials Today: Proceedings, 2018, vol. 5, no. 1, pp. 351–359.

K. L. Cezar et al., “Development of a Novel Flow Control System with Arduino Microcontroller Embedded in Double Effect Absorption Chillers Using The LiBr/H2O Pair,” Int. J. Refrig., vol. 111, pp. 124– 135, 2020.

J. S. Furter and P. C. Hauser, “Intercavtive Control of Purpose Built Analytical Instruments with Forth on Microcontrollers - A Tutorial,” Anal. Chim. Acta, vol. 1058, pp. 18–28, 2019.

S. Dislitas, G. Ömerb, and R. Ahıska, “Microcontroller-based test system for determining the P-N type and Seebeck coefficient of the thermoelectric semiconductors,” Measurement, vol. 139, pp. 361–369, 2019.

E. Sobari, R. Piarna, and M. A. Aris, “Respon Fase Vegetatif Tomat Cherry Lokal Cijambe Subang ( Solanum pimpinellifolium ) Terhadap Aplikasi Dosis Nutrisi Sistem Irigasi Tetes,” in 10th Industrial Research Workshop and National Seminar, 2019, vol. 10, no. 1, pp. 258–263.

B. Arasada and B. Suprianto, “Aplikasi Sensor Ultrasonik Untuk Deteksi Posisi Jarak Pada Ruang Menggunakan Arduino Uno,” J. Tek. Elektro, vol. 6, no. 2, pp. 137–145, 2017.

G. C. Patty and E. S. Julian, “Prototipe Pengukur Tinggi, Berat, Dan Suhu Badan Berbasis Arduino Uno Dan Labview,” J. Jetri, vol. 16, no. 1, pp. 55–68, 2018.

H. Cahyani, Harmadi, and Wildian, “Pengembangan Alat Ukur Total Dissolved Solid (TDS) Berbasis Mikrokontroler dengan Beberapa Variasi Bentuk Sensor Konduktivitas,” J. Fis. Unand, vol. 5, no. 4, pp. 371–377, 2016.

A. H. Saptadi, “Perbandingan Akurasi Pengukuran Suhu dan Kelembaban Antara Sensor DHT11 dan DHT22,” J. Infotel, vol. 6, no. 2, pp. 50–56, 2014.

B. Frasetya, K. Harisman, A. Rohim, and C. Hidayat, “Evaluasi Nutrisi Hidroponik Alternatif terhadap Pertumbuhan dan Hasil Mentimun Jepang Varietas Roberto pada Hidroponik Irigasi Tetes Infus,” in Seminar Nasional Dalam Rangka Dies Natalis UNS Ke 42 Tahun 2018, 2018, vol. 2, no. 1, pp. 230–238.

W. Setiawati, R. Murtiningsih, G. A. Sopha, and Tri Handayani, “Tanaman Sayuran,” in Petunjuk Teknis Budidaya Tanaman Sayuran, Bandung: Badan Penelitian dan Pengembangan Pertanian, 2007, pp. 1– 135.

I. A. Rozaq and N. Yulita, “Uji Karakterisasi Sensor Suhu DS18B20 Waterproof Berbasis Arduino Uno Sebagai Salah Satu Parameter Kualitas Air,” in Prosiding SNATIF Ke-4 Tahun 2017, 2017, pp. 303– 309.

Surmi, N. Ihsan, and A. J. Patandean, “Analysis of Humidity and Shallow Surface Temperature by Using Hygrometer and Thermocouple at Pincara Masamba District of Luwu Utara,” J. Sains dan Pendidik. Fis., vol. 12, no. 2, pp. 204–208, 2016.

D. M. Maharani, S. M. Sutan, and P. Arimurti, “Controlling Temperature and Moisture (RH) against Vegetative Growth of Red Chili (Capsicum Annuum L.) at Plant factory,” J. Keteknikan Pertan. Trop. dan Biosist., vol. 6, no. 2, pp. 120–134, 2018.

S. Edi and J. Bobihoe, “Budidaya Pakchoi,” in Budidaya Tanaman Sayuran, Balai Pengkajian Teknologi Pertanian (BPTP) Jambi, 2010, pp. 1–43.

B. G. A. Putra and G. Madyono, “Analisis Intensitas Cahaya Pada Area Produksi Terhadap Keselamatan Dan Kenyamanan Kerja Sesuai Dengan Standar Pencahayaan ( Studi Kasus Di PT . Lendis Cipta Media Jaya ),” J. Optimasi Sist. Ind., vol. 10, no. 2, pp. 115–124, 2017.

M. Pamungkas, Hafiddudin, and Y. S. Rohmah, “Perancangan dan Realisasi Alat Pengukur Intensitas Cahaya,” J. Elkomika, vol. 3, no. 2, pp. 120–132, 2015.

Downloads

Published

2021-03-31

How to Cite

Sobari, E., Vernanda, D., Nugraha Purnawan, N., Herdiawan Apandi, T., & Aliyawan Aris, M. (2021). The Performances of Environmental Control Systems to Hydroponics Agriculture Based on Microcontroller. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 13(1), 37–43. Retrieved from https://jtec.utem.edu.my/jtec/article/view/5787