Optimization of Current-Reused LNA with PSO Algorithm
Keywords:
Current Reused, Optimization, Low Noise Amplifier, PSO Algorithm,Abstract
This paper presents a tunable narrow band Low Noise Amplifier (LNA), which is optimized at the frequency of 4.4 GHz. Relating to the proposed low noise amplifier that has current-reused structure drawn from the auxiliary gate-source capacitor of the main transistor and the bypass capacitor, the performance of the LNA is tuned. The temperature and source variations can change the operational frequency and desired parameters. In this paper, the shift of the frequency is compensated using the particle swarm optimization (PSO) algorithm. The designed low noise amplifier with particle swarm optimization algorithm in the present of PVT (Process, Voltage, and Temperature) variations achieves a voltage gain of 12.52 dB, with corresponding noise figure (NF) of 1.80 dB, input return loss (S11) of -37 dB, and output return loss (S22) of -42 dB at the frequency of 4.4 GHz. The die area of the designed LNA is 939.5µm*746.83µm.Downloads
Published
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.