Investigation on the Thin Film Nanocomposite Ceramic-Polymer to Patch Antenna
Keywords:
Ferroelectric, Ceramic-Polymer, Barium Titanate (Batio3), Polydimethylsiloxane (Pdms), High Permittivity?Abstract
In this paper, an investigation of the highpermittivity ceramic-polymer composite antenna is performed using Barium Titanate, BaTiO3 nanocomposite ceramic powder mixed with polymer composite of polydimethylsiloxane (PDMS). The ceramic-polymer composite, PDMS-BaTiO3 thin film layer was formed through a spin coating process on the top and the bottom layer of the PDMS substrate for the antenna design in order to achieve an overall antenna size reduction. The proposed patch antennas using the ceramic-polymer composite were analysed at a resonant frequency of 2.45 GHz for WLAN applications regarding antenna performance on return loss, gain, bandwidth, radiation efficiency, and voltage standing wave ratio (VSWR). Two different experimental compositions of 15% and 25% PDMS-BaTiO3 thin film substrate were prepared in the proposed design to create soft, hydrophobic, flexible, resistance against corrosion and lightweight antenna. Significantly, from theoretical analysis and simulation results, it was demonstrated that ferroelectric ceramic-polymer material leads up to 84 % size reduction without having to compromise other antenna performance parameters.Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)