Microfluidic Channel Geometry and Fluid Velocity Investigation for Single Cell Hydrodynamic Trapping

Authors

  • Amelia Ahmad Khalili Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Mohd Ariffanan Mohd Basri Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Mohd Azhar Abdul Razak Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Rubita Sudirman Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Mohd Afzan Othman Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Ismail Ariffin Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
  • Camallil Omar Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Keywords:

Cell Trapping, Hydrodynamic, Single Cell, Velocity,

Abstract

Microfluidic technology has been applied widely for separating and trapping various type of cells. This technology has open ways to study and understand the biological systems, the mechanism of diseases, developing the therapeutic drugs, strategy to cure diseases and also in developing the biomarker for early disease diagnosis. Hydrodynamic cell trapping offers a great opportunity to direct, position, and trap particles or cells in small volume liquids, a crucial requirement for efficient single cell analysis. The challenges in hydrodynamic trapping are the need for control precisely the microfluidic multiple streams and a precise geometry design required to allow successful trapping. To address this limitation, the single cell hydrodynamic trapping finite element simulation was developed to determine the efficiency of single cell traps of variable geometries. A series of simulation studies were performed to analyze the effect of the trap hole size, channel’s height and fluid’s flow profiles to the appropriate for efficient single cell trapping. From the simulation, increasing the trap hole size has resulted in a gradually decreased of the fluid velocity in the trap channel. Furthermore, the fluid velocity in trap channel was found increasing with the increment of the HChannel. Single cell trapping channel with the HHole of 4 μm and HChannel of 15 μm produced the highest velocity in the trap channel compared to other geometry tests. This finite element model could be utilised as a guideline for designing and developing a chip to reduce the costly and time-consuming trialand-error fabrication process.

References

S. C. Hoffmann, A. Cohnen, T. Ludwig, and C. Watzl, “2B4 engagement mediates rapid LFA-1 and actin-dependent NK cell adhesion to tumor cells as measured by single cell force spectroscopy,” J. Immunol., vol. 186, no. 5, pp. 2757–64, Mar. 2011.

A. Beaussart, S. El-Kirat-Chatel, R.M. Sullan, D. Alsteens, P. Herman, S. Derclaye, and Y. F. Dufrêne, “Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy,” Nat. Protoc., vol. 9, no. 5, pp. 1049–55, May 2014.

A. Engel and H. E. Gaub, “Structure and mechanics of membrane proteins,” Annu. Rev. Biochem., vol. 77, pp. 127–48, Jan. 2008.

S.-P. Yang, C.-Y. Yang, T.-M. Lee, and T.-S. Lui, “Effects of calciumphosphate topography on osteoblast mechanobiology determined using a cytodetacher,” Mater. Sci. Eng. C, vol. 32, no. 2, pp. 254–262, Mar. 2012.

D. J. Muller, Biochemistry, “AFM: A Nanotool in Membrane Biology,” Biochemistry, vol. 47, pp. 7896–7898, 2008.

C. P. Palmer, M. E. Mycielska, H. Burcu, K. Osman, T. Collins, R. Beckerman, R. Perrett, H. Johnson, E. Aydar, and M.B. Djamgoz, “Single cell adhesion measuring apparatus (SCAMA): application to cancer cell lines of different metastatic potential and voltage-gated Na+ channel expression,” Eur. Biophys. J., vol. 37, no. 4, pp. 359–68, Apr. 2008.

Z. Gao, S. Wang, H. Zhu, C. Su, G. Xu, and X. Lian, “Using selected uniform cells in round shape with a micropipette to measure cell adhesion strength on silk fibroin-based materials,” Mater. Sci. Eng. C, vol. 28, no. 8, pp. 1227–1235, Dec. 2008.

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech., vol. 33, no. 1, pp. 15–22, Jan. 2000.

C. Gourier, A. Jegou, J. Husson, and F. Pincet, “A Nanospring Named Erythrocyte. The Biomembrane Force Probe,” Cell. Mol. Bioeng., vol. 1, no. 4, pp. 263–275, Nov. 2008.

E. Evans, V. Heinrich, A. Leung, and K. Kinoshita, “Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton,” Biophys. J., vol. 88, no. 3, pp. 2288–98, Mar. 2005.

E. Evans, K. Ritchie, and R. Merkel, “Sensitive Force Technique to Probe Molecular Adhesion and Structural Linkages at Biological Interfaces,” vol. 68, no. June, pp. 2580–2587, 1995.

E. Evans, D. Berk, and A. Leung, Biophys. “Detachment of agglutininbonded red blood cells. I. Forces to rupture molecular-point attachments,” Biophys. J., vol. 59, no. 4, pp. 838–848, Apr. 1991.

M. Castelain, P. G. Rouxhet, F. Pignon, A. Magnin, and J.-M. Piau, “Single-cell adhesion probed in-situ using optical tweezers: A case study with Saccharomyces cerevisiae,” J. Appl. Phys., vol. 111, no. 11, p. 114701, 2012.

M. Schwingel and M. Bastmeyer, “Force Mapping during the Formation and Maturation of Cell Adhesion Sites with Multiple Optical Tweezers.,” PLoS One, vol. 8, no. 1, p. e54850, Jan. 2013.

J. E. Curtis and J. P. Spatz, “Getting a Grip: Hyaluronan-Mediated Cellular Adhesion,” In Optical Science and Technology, the SPIE 49th Annual Meeting, (International Society for Optics and Photonics, Birmingham 2004), Vol. 5514 pp. 455-466.

J. Chen, Y. Zheng, Q. Tan, Y. L. Zhang, L. Yan, J. Li, W. R. Geddie, M. A. S. Jewett and Y. Sun, “A microfluidic device for simultaneous electrical and mechanical measurements on single cells,” Biomicrofluidics, vol. 5, no. 1, p. 14113, Jan. 2011.

D. Mondal, C. RoyChaudhuri, L. Das, and J. Chatterjee, “Microtrap electrode devices for single cell trapping and impedance measurement,” Biomed. Microdevices, vol. 14, no. 5, p. 955–964 LA– English, 2012.

S. Gabriele, M. Versaevel, P. Preira, and O. Theodoly, “A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays,” Lab Chip, vol. 10, no. 11, pp. 1459–1467, 2010.

A. M. Forsyth, J. Wan, W. D. Ristenpart, and H. A. Stone, “The dynamic behavior of chemically ‘stiffened’ red blood cells in microchannel flows,” Microvasc. Res., vol. 80, no. 1, pp. 37–43, Jul. 2010.

Y. Cho, H. S. Kim, A. Bruno Frazier, Z. G. Chen, D. M. Shin, and A. Han, “Whole-Cell Impedance Analysis for Highly and Poorly Metastatic Cancer Cells,” Microelectromechanical Systems, Journal of, vol. 18, no. 4. pp. 808–817, 2009.

G.-H. Lee, S.-H. Kim, A. Kang, S. Takayama, S.-H. Lee, and J. Y. Park, “Deformable L-shaped microwell array for trapping pairs of heterogeneous cells,” J. Micromechanics Microengineering, vol. 25, no. 3, p. 35005, Mar. 2015.

T. Sun, J. Kovac, and J. Voldman, “Image-Based Single-Cell Sorting via Dual-Photopolymerized Microwell Arrays,” Anal. Chem., vol. 86, no. 2, pp. 977–981, Jan. 2014.J.

R. Rettig and A. Folch, “Large-Scale Single-Cell Trapping And Imaging Using Microwell Arrays,” vol. 77, no. 17, pp. 5628–5634, 2005.

J. Tang, R. Peng, and J. Ding, “The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces,” Biomaterials, vol. 31, no. 9, pp. 2470–2476, Mar. 2010.

J. Doh, M. Kim, and M. F. Krummel, “Cell-laden microwells for the study of multicellularity in lymphocyte fate decisions,” Biomaterials, vol. 31, no. 12, pp. 3422–3428, Apr. 2010.

N.-C. Chen, C.-H. Chen, M.-K. Chen, L.-S. Jang, and M.-H. Wang, “Single-cell trapping and impedance measurement utilizing dielectrophoresis in a parallel-plate microfluidic device,” Sensors Actuators B Chem., vol. 190, pp. 570–577, Jan. 2014.

M. Sen, K. Ino, J. Ramon-Azcon, H. Shiku, and T. Matsue, “Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes,” Lab Chip, vol. 13, no. 18, pp. 3650–3652, 2013.

J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, “A microfabrication-based dynamic array cytometer,” Anal. Chem., vol. 74, no. 16, pp. 3984–3990, Jul. 2002.

R. S. Thomas, H. Morgan, and N. G. Green, “Negative DEP traps for single cell immobilisation,” Lab Chip, vol. 9, no. 11, pp. 1534–1540, 2009.

D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron., vol. 19, no. 7, pp. 771–780, Feb. 2004.

I. Choi, Y. I. Yang, Y.-J. Kim, Y. Kim, J.-S. Hahn, K. Choi, and J. Yi, “Directed positioning of single cells in microwells fabricated by scanning probe lithography and wet etching methods,” Langmuir, vol. 24, no. 6, pp. 2597–2602, 2008.

A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, “Microfluidic control of cell pairing and fusion,” Nat Meth, vol. 6, no. 2, pp. 147–152, Feb. 2009.

S.-M. Kuo, C.-C. Yang, J. Shiea, and C.-H. Lin, “A post-bonding-free fabrication of integrated microfluidic devices for mass spectrometry applications,” Sensors Actuators B Chem., vol. 156, no. 1, pp. 156–161, Aug. 2011.

W.-H. Tan and S. Takeuchi, “Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads,” Lab Chip, vol. 8, no. 2, pp. 259–66, Feb. 2008.

W.-H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications.,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 4, pp. 1146–1151, Jan. 2007.

L. M. Lee and A. P. Liu, “A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels,” Lab Chip, vol. 15, no. 1, pp. 264–273, 2015.

L. M. Lee, and A. P. Liu, “A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels,” Lab Chip, vol. 15, no. 1, pp. 264–273, 2015.

M. Kim, J.-W. Ahn, U.-H. Jin, D. Choi, K.-H. Paek, and H.-S. Pai, “Activation of the programmed cell death pathway by inhibition of proteasome function in plants,” J. Biol. Chem., vol. 278, no. 21, pp. 19406–15, May 2003.

R. D. Sochol, M. E. Dueck, S. Li, L. P. Lee, and L. Lin, “Hydrodynamic resettability for a microfluidic particulate-based arraying system.,” Lab Chip, vol. 12, no. 23, pp. 5051–6, Dec. 2012.

T. Arakawa, M. Noguchi, K. Sumitomo, Y. Yamaguchi, and S. Shoji, “High-throughput single-cell manipulation system for a large number of target cells,” Biomicrofluidics, vol. 5, no. 1, p. 14114, Jan. 2011.

J. Kim, J. Erath, A. Rodriguez, and C. Yang, “A high-efficiency microfluidic device for size-selective trapping and sorting,” Lab Chip, vol. 14, no. 14, pp. 2480–2490, 2014.

T. Teshima, H. Ishihara, K. Iwai, A. Adachi, and S. Takeuchi, “A dynamic microarray device for paired bead-based analysis,” Lab Chip, vol. 10, no. 18, pp. 2443–8, Sep. 2010.

I. Kumano, K. Hosoda, H. Suzuki, K. Hirata, and T. Yomo, “Hydrodynamic trapping of Tetrahymena thermophila for the longterm monitoring of cell behaviors,” Lab Chip, vol. 12, no. 18, pp. 3451– 3457, Sep. 2012.

A. Ahmad Khalili, M. R. Ahmad, M. Takeuchi, M. Nakajima, Y. Hasegawa, and R. Mohamed Zulkifli, “Hydrodynamic trapping of Tetrahymena thermophila for the long-term monitoring of cell behaviors.,” Lab Chip, vol. 12, no. 18, pp. 3451–3457, Sep. 2012.

A. A. Khalili and M. R. Ahmad, “Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.,” Int. J. Mol. Sci., vol. 16, no. 11, pp. 26770–85, 2015.

A. A. Khalili, M. A. M. Basri, and M. R. Ahmad, “Simulation of Single Cell Trapping via Hydrodynamic Manipulation,” J. Teknol., vol. 69, no. 8, pp. 121–126, 2014.

T. Gervais, J. El-Ali, A. Günther, and K. F. Jensen, “Flow-induced deformation of shallow microfluidic channels,” Lab Chip, vol. 6, no. 4, pp. 500–7, Apr. 2006.

A. K. Bryan, A. Goranov, A. Amon, and S. R. Manalis, “Measurement of mass, density, and volume during the cell cycle of yeast,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 3, pp. 999–1004, Jan. 2010.

A. E. Smith, Z. Zhang, C. R. Thomas, K. E. Moxham, and A. P. Middelberg, “The Mechanical Properties of Saccharomyces Cerevisiae,” Proc. Natl. Acad. Sci. U. S. A., vol. 97, no. 18, pp. 9871– 4, Aug. 2000.

J. D. Stenson, C. R. Thomas, and P. Hartley, “Modelling the mechanical properties of yeast cells,” Chem. Eng. Sci., vol. 64, no. 8, pp. 1892–1903, Apr. 2009.

J. D. Stenson, P. Hartley, C. Wang, and C. R. Thomas, “Determining the mechanical properties of yeast cell walls,” Biotechnol. Prog., vol. 27, no. 2, pp. 505–12, 2011.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, and J. S. Foster, “Weighing of biomolecules, single cells and single nanoparticles in fluid.,” Nature, vol. 446, no. 7139, pp. 1066–9, May 2007.

Downloads

Published

2017-11-30

How to Cite

Ahmad Khalili, A., Mohd Basri, M. A., Abdul Razak, M. A., Sudirman, R., Othman, M. A., Ariffin, I., & Omar, C. (2017). Microfluidic Channel Geometry and Fluid Velocity Investigation for Single Cell Hydrodynamic Trapping. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-8), 93–99. Retrieved from https://jtec.utem.edu.my/jtec/article/view/3105