Simulation-based Analysis System of Glucose-Insulin Dynamics in Type 1 Diabetes Mellitus

Authors

  • Nur Atikah Mohd Daud Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Batu Pahat, Johor, Malaysia. Cardiology and Physiome Analysis Research Laboratory, Microelectronics and Nanotechnology Shamsuddin Research Centre (MiNT-SRC), UTHM, 86400 Batu Pahat, Johor, Malaysia
  • Aina Farhiyah Mohd Sabri Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Batu Pahat, Johor, Malaysia.
  • Farhanahani Mahmud Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Batu Pahat, Johor, Malaysia. Cardiology and Physiome Analysis Research Laboratory, Microelectronics and Nanotechnology Shamsuddin Research Centre (MiNT-SRC), UTHM, 86400 Batu Pahat, Johor, Malaysia

Keywords:

Glucose-insulin Dynamics, Mathematical Modeling, Matlab, T1DM,

Abstract

This project presents the development of an analysis system via simulation approach of glucose-insulin dynamics in a virtual Type 1 Diabetes Mellitus (T1DM) patient: Hovorka diabetic model using MATLAB Graphical User Interface (GUI). This analysis system is developed for a convenient technique in studying the interaction of insulin on blood glucose level based on meal and insulin taken. Several simulations of glucose-insulin dynamics have been conducted using the developed system to study the effect of patient body weight, a number of meal intake and amount and timing of insulin injection to the changes of blood glucose concentration.

References

Institute for Public Health (IPH) 2015. National Health and Morbidity Survey 2015 (NHMS 2015). Vol II: Non-Communicable Diseases, Risk Factors & Other Health Problems; 2015.

Non-Communicable Disease Section. Vol I: National Diabetes Registry Report (2009-2012).

I. Ajmera, M. Swat, C. Laibe, N. L. Nover, and V. Chelilah, “Review: The impact of mathematical modeling on the understanding of diabetes and related complications,” Pharmacology & Systems Pharmacology, 2013(2): e54.

J. William, “Drive to eliminate the burden of type 1 diabetes,” The Lancet, vol. 367, 11–17 March 2006, pp. 795-797.

National Institute for Health and Care Excellence United Kingdom Publication on Diabetes, (2014), Type 1 Diabetes: Diagnosis and Management of Type 1 Diabetes in Children, Young People and Adults, NICE Clinical Guideline 15, December 2014.

M. M. Aye, and S. L. Atkin, (2014), “Patient Safety and Minimizing Risk with Insulin Administration – Role of Insulin Degludec,” Dove Press J.: Drug, Healthcare and Patient Safety, vol. 6, pp. 55–67, Apr. 2014.

L. J. Chassin, M. E. Wilinska, and R. Hovorka, (2004), “Evaluation of glucose controllers in virtual environment: methodology and sample application,” Artificial Intelligence in Medicine, vol. 32, pp. 171—181.

M. E. Wilinska, L. J. Chassin, H. C. Schaller, L. Schaupp, T. R. Pieber, and R. Hovorka, “Insulin kinetics in Type-1 Diabetes: Continuous and bolus delivery of rapid acting insulin,” IEEE Trans. on Biomedical Engineering, vol. 52(1), Jan. 2005.

M. E. Wilinska, L. J. Chassin, C. L. Acerini, J. M. Allen, R.N., D. B. Dunger, and R. Hovorka, “Simulation Environment to Evaluate Closed-Loop Insulin Delivery Systems in Type 1 Diabetes,” J. of Diabetes Sci. and Tech., vol. 4(1), Jan. 2010.

R. Hovorka, V. Canonico, J. L. Chassin, U. Haueter, M. M. Benedetti, M.O. Federici, T. R. Pieber, H.C. Schaller, L. Schaupp, T. Vering, and M. E. Willinska, “Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes,” Physio. Meas., vol. 25 (2004) pp. 905-920.

A. S. Ibrahim, A. A. Azmi, M. Dzulkifli, and N. N. A. Rahman, “Advanced Mathematical Model of Glucose-Insulin Concentrations in Type 1 Diabetes Using Artificial Neural Networks,” Wulfenia J., vol. 20(6), May 2013.

D. Boiroux, A. K. D. Henriksen, S. Schmidt, K. Norgaard, N. K. Poulsen, H. Madsen, and J. B. Jorgensen, “Assessment of model predictive and adaptive glucose control strategies for people with Type 1 Diabetes,” 19th World Congress The Int. Fed. of Auto. Control, South Africa, Aug.2014.

V. Kirubakaran, T. K. Radkakrishnan, N. Sivakumaran, “Blood glucose concentration regulation in Type 1 Diabetics using multi model multi parametric model predictive control: an empirical approach,” 12th IFAC Symp. on Comp. Appl. in Biotech., The Int. Fed. of Auto. Control, pp. 16-18, Dec. 2013.

N. A. M. Daud, F. Mahmud, and M. H. Jabbar, “Meal simulation in glucose-insulin reaction analysis using hovorka model towards systemon-chip implementation,” ARPN J. of Eng. and Applied Sci., vol. 10(19): 8927-8935.

S. H. Andersen (2014). “Software for in silico testing of an artificial pancreas,” Master thesis of Engineering Technical University of Denmark.

M. Naerum (2010). “Model predictive control for insulin administration in people with Type 1 Diabetes,” Bachelor thesis, Denmark Technical University, IMM-BSC-2010-29, pp. 1-79.

M. I. A. Malik (2015). “Simulation of glucose-insulin dynamics using MATLAB-Simulink,” Bachelor Thesis, Universiti Tun Hussein Onn Malaysia.

A. L. Lassen, and T. S. S. Nielsen (2008). “Modeling and simulation of glucose-insulin dynamics,” Bachelor thesis, Denmark Technical University, IMM-BSC: ISSN 0909-3192, pp. 1-84.

S. Gerard, et al. (1981). “Correlation between the nature and amount of carbohydrate in meal intake and insulin delivery by the artificial pancreas in 24 insulin-dependent diabetics”, Diabetes, vol. 30.

S.C. Woods, et al. (1985). “Insulin: Its relationship to the central nervous system and to the control of food intake and body weight”, The American Journal of Clinical Nutrition, vol. 42, pp. 1063-1071.

S. Toshimi, I. Hiroyasu, I. Fujiko, et. al., “Underweight as a predictor of diabetes in older adults,” Diabetes Care, vol. 31(3), Mar. 2008.

D. Russell-Jones and R. Khan. “Insulin-associated weight gain in diabetes – causes, effects and coping strategies,” Diabetes, Obesity and Metabolism, vol. 9, 2007, pp. 799-812.

American Diabetes Association. Nutrition recommendations and interventions for diabetes. Diabetes Care, vol. 31(1), Jan. 2008.

Downloads

Published

2017-11-30

How to Cite

Mohd Daud, N. A., Mohd Sabri, A. F., & Mahmud, F. (2017). Simulation-based Analysis System of Glucose-Insulin Dynamics in Type 1 Diabetes Mellitus. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-8), 77–81. Retrieved from https://jtec.utem.edu.my/jtec/article/view/3102