Force Adaptation Algorithm for Finger Exercise Using Kuka Youbot
Keywords:
Adaptation, force feedback, finger exercise, rehabilitation, KUKA Youbot,Abstract
The comfort and safety is still a major impact in designing a rehabilitation robot. This paper presents an adaptive control strategy algorithm for rehabilitation robot using KUKA Youbot for human finger. The algorithm is designed to handle the safety and comfort criteria during finger rehabilitation using finger force feedback. Two algorithms are developed to handle two different types of exercises for patient’s finger. These algorithms are tested in VREP simulation software. The spring damper system is used to simulate the human’s finger along with finger’s mechanical properties. Both algorithms used forced feedback to adapt the limitation of a patient’s finger. The 5 Nm was set as a safety threshold force that human can handle. The result shows that the algorithm has an ability to follow the safety criteria and can adapt the limitation of a human finger.References
Rajasekaran, V., Aranda, J., Casals, A., and Pons, J.L. 2015. An Adaptive Control Strategy For Postural Stability Using A Wearable Robot. Robotics and Autonomous Systems. 73: 16–23.
Miskon, M.F. Bin, and Yusof, M.B.A.J. 2014. Review Of Trajectory Generation Of Exoskeleton Robots. 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA). 12–17.
Viteckova, S., Kutilek, P., and Jirina, M. 2013. Wearable Lower Limb Robotics: A Review. Biocybernetics and Biomedical Engineering. 33(2): 96–105.
Chang, W.H., and Kim, Y.-H. 2013. Robot-assisted Therapy In Stroke Rehabilitation. Journal of stroke. 15(3): 174–81.
Zhang, X., Xiang, Z., Lin, Q., and Zhou, Q. 2013. The Design And Development Of A Lower Limbs Rehabilitation Exoskeleton Suit. 2013 ICME International Conference on Complex Medical Engineering, CME 2013. 307–312.
Dollar, A.M., and Herr, H. 2007. Active Orthoses For The Lower-limbs: Challenges And State Of The Art. 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07. 968–977.
Zhang, J., and Cheah, C.C. 2015. Passivity And Stability Of Human-Robot Interaction Control For Upper-Limb Rehabilitation Robots. IEEE Transactions on Robotics. 31(2): 233–245.
Marchal-Crespo, L., and Reinkensmeyer, D.J. 2009. Review Of Control Strategies For Robotic Movement Training After Neurologic Injury. Journal of neuroengineering and rehabilitation. 6(1): 20.
Oboe, R., and Pilastro, D. 2014. Non-linear Adaptive Impedance Controller For Rehabilitation Purposes. 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC). 272–277.
Nagarajan, U., Aguirre-Ollinger, G., and Goswami, A. 2016. Integral Admittance Shaping: A Unified Framework For Active Exoskeleton Control. Robotics and Autonomous Systems. 75: 310–324.
van Dijk, W., Koopman, B., Ronsse, R., and van der Kooij, H. 2012. Feed-forward Support Of Human Walking. 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). 1955–1960.
Yin, G., Zhang, X., Chen, J., and Shi, Q. 2015. RBF Neural Network Compensation Based Trajectory Tracking Control For Rehabilitation Training Robot. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). 359–364.
Ibarra, J.C.P., and Siqueira, A.A.G. 2014. Impedance Control Of Rehabilitation Robots For Lower Limbs, Review. 2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol. 235–240.
Hogan, N. 1984. Impedance Control: An Approach To Manipulation. IEEE American Control Conference. 304–313.
B. Grivas, T. 2012. Post-Traumatic Malunion Of The Proximal Phalanx Of The Finger. Medium- Term Results In 24 Cases Treated By “In Situ” Osteotomy. The Open Orthopaedics Journal. 6(1): 468–472.
Exercises To Help Bend A Broken Finger | LIVESTRONG.COM.
Pons, J.L. 2008. Wearable Robots: Biomechatronic Exoskeletons, John Wiley & Sons, Ltd, Chichester, UK.
Park, J., Pažin, N., Friedman, J., et al. 2014. Mechanical Properties Of The Human Hand Digits: Age-related Differences. Clinical Biomechanics. 29(2): 129–137.
Downloads
Published
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.