Optimization of Algorithms in Relation to iBeacon


  • Jan Budina University of Hradec Kralove, Czech Republic.
  • Martin Zmitko University of Hradec Kralove, Czech Republic.
  • Pavel Kříž University of Hradec Kralove, Czech Republic.


iBeacon, Optimization, Bluetooth, Fingerprint, Algorithm, Position System,


The boom of portable electronics and high-speed wireless networks has brought changes throughout society, including development in positioning systems. Indoor localization is more and more important. With modern technology, we are able to track people in shopping complexes and offer them discounts for surrounding goods. The following text deals with the design and description of methods to determine user’s position based on fingerprint technology. The text focuses on the description of algorithms in relation to the iBeacon. Three main algorithms were described in the text. The following text describes the implementation of Knn algorithm. The main goal of this paper is to clearly describe the basic positioning algorithms for the readers, introduce implementation of the Knn algorithm and its usage in real environment.


What is the technical specification of Estimote Beacons? Estimote [online].2014 [cit. 2015 -12-04]. Online:https://community.estimote.com/hc/en -us/articles/203159703-What-is-the-technical-specification-of-Estimote-BeaconsInternational Journal of Communication Systems [online]. 2012 [cit. 2015-12-10]. ISSN 10745351. Online: http://doi.wiley.com/10.1002/dac.2417

Budina, Jan, Ondřej Klapka, Tomáš Kozel and Martin Zmítko. Method of iBeacon optimal distribution for indoor localization. Ninth International and Interdisciplinary Conference on Modeling and Using Context. 2015, , 14.

Budina, Jan, Ondřej Klapka and Martin Zmítko. Mobile context oriented platform for learning support. ICETA 2015. 2015, , 14.

Bluetooth Low Energy. Bluetooth [online]. 2015 [cit. 2015 -12-22]. Online: http://www.bluetooth.com/Pages/low-energy-tech-info.aspx

Bluetooth Low Energy. Android Developers [online]. 2015 [cit. 2015-12-22]. Online: https://developer.android.com/guide/topics/connectivity/bluetooth-le.html

Alhmiedat, Tareq, Ghassan Samara and Amer O. Abu SALEM. An Indoor Fingerprinting Localization Approach for ZigBee Wireless Sensor Networks. European Journal of Scientific Research, 2013. ISSN 1450-216X.

Optimal wireless access point placement for location dependent services [online]. 2003, (DIT-03-052) [cit. 2015-12-04]. Available: http://eprints.biblio.unitn.it/489/1/DIT-03-052-withCover.pdf

LINZ, Peter. An introduction to formal languages and automata. 5th ed. Sudbury, MA: Jones, 2012, xiii, 437 s. ISBN 978-1-4496-1552-9.

Sipser, Michael. Introduction to the theory of computation. 3rd Ed. Boston, MA: Course Technology Cengage Learning, 2012, p. cm. ISBN 978-113-3187-790.

Saravanan Thirumuruganathan. Saravanan Thirumuruganathan[online]. 2010 [cit. 2016-12-28]. Available: https://saravananthirumuruganathan.wordpress.com/2010/05/17/adetailed-introduction-to-k-nearest-neighbor-knn-algorithm/

Gain understanding of indoor localization [online]. Germany [cit. 2016-01-03]. Available: http://kom.aau.dk/group/10gr891/

Mirowski, Piotr, Dimitros Milioris, Philip Whiting a Tin Kam Ho. Probabilistic Radio-Frequency Fingerprinting and Localization on the Run. In: Piotr Mirowski [online]. France: Bell Labs [cit. 2015-12-09]. Available: https://cs.nyu.edu/~mirowski/pub/Mirowski_BLTJ2014_Probabilistic


Honkavirta, Vile, Tommi Perälä, Simo ali-lötty and Robert Piché. A Comparative Survey of WLAN Location Fingerprinting Methods. In: Workshop on Positioning [online]. Finland: Tampere University of Technology, 2009 [cit. 2015-12-16]. Available: http://math.tut.fi/posgroup/honkavirta_et_al_wpnc09a.pdf

LI, Binghao, Andrew G. Dempster, Joel Barnes a Chris Ricoz. Probabilistic Algorithm to Support the Fingerprinting Method for CDMA Location. In: ResearchGate [online]. Australia: University of New South Wales, 2013 [cit. 2015-12-08]. Available: https://www.researchgate.net/publication/240809676_Probabilistic_Algorithm_to_Support_the_Fingerprinting_Method_for_CDMA_Location.

Youssef, Moustafa and Ashok Agrawala. The Horus WLAN Location Determination System. In: Moustafa A. Youssef [online]. Maryland: University of Maryland, 2006 [cit. 2015-12-08]. Available: http://www.cs.umd.edu/~moustafa/papers/horus_usenix.pdf

Castro, Paul, Patrick Chiu, Ted Kremenek and Richard Muntz. Final version. To appear in Proceedings of Ubicomp ’01. A Probabilistic Room Location Service for Wireless Networked Environments. In: Cite SeerX [online]. Los Angeles, USA: UCLA, Department of Computer Science [cit. 2015-12-16]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

Muntz, Richard and David Kriesel. Neural Networks. In: DKrisel[online]. Germany: University of Bonn, 2005 [cit. 2015-12-20].Available: http://www.dkriesel.com/_media/science/neuronalenetzeen-zeta2-1col-dkrieselcom.pdf

Wong, Lawrence. Indoor Localization Methods [online]. National University of Singapore, 2013 [cit. 2015-12-13]. Available z:


Chan, Eddie C a George Baciu. Introduction to wireless localization: with iPhone SDK examples. Singapore: Wiley, 2012, xvii, 307 p., [8] p. of col. plates. ISBN 978-1118298510

Prasithsangaree, P., P. Krishnamurthy a P.K. Chrysanthis. On indoor position location with wireless LANs. In: University od Pittsburgh [online]. USA: University od Pittsburgh [cit. 2016-01-07]. Available z: http%3A%2F%2Fprojetomonografiasitesurveyigorleonardoeloymacedo.googlecode.com%2Fsvn%2Ftrunk%2FReferencias%2FArtigos%2FOn%2520Indor%2520Position%2520Location%2520With%2520Wireless%2520lans.pdf&usg=AFQjCNEiwa72EJCS57cN0kLXlH6oscShkg&sig2=Y1Jh_1sIKkNL4WhJOtsqQw




How to Cite

Budina, J., Zmitko, M., & Kříž, P. (2017). Optimization of Algorithms in Relation to iBeacon. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-5), 47–51. Retrieved from https://jtec.utem.edu.my/jtec/article/view/2391