Optical, Electrical and Structural Investigation on Different Molarities of Titanium Dioxide (TiO2) via Sol-Gel Method

Authors

  • Angelina Harry Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia.
  • Marini Sawawi Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia.
  • Muhammad Kashif Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia.
  • Siti Kudnie Sahari Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia.
  • Mohammad Rusop NANO-Scitech Centre (NST), Institute of Science, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia.

Keywords:

Sol-Gel, TiO2, Thin Film, Properties

Abstract

Titanium dioxide (TiO2) solution having different molarities were synthesized and deposited on glass substrates by using sol-gel spin-coating method. The variation in thickness, optical, electrical and structural properties of TiO2 thin films were investigated by surface profiler (SP), UV-Vis spectroscopy, two-point probes and atomic force microscopy (AFM), respectively. The result show that the thickness of TiO2 thin film increases as the molarities increases. The optical band gap energy decreases from 3.78 eV to 3.07 eV as the TiO2 molarities increases from 0.01M to 0.20M. The maximum value of the absorption coefficient was 16.27 x 104 cm-1 at 0.20M with surface roughness of 21.45 nm. Thin films deposited with 0.01M show lower absorption coefficient (3.87 x 104 cm-1) within visible region with surface roughness of 5.21 nm. The improvement in optical and structural properties of TiO2 thin films affects the electrical properties as the highest conductivity 9.62 x 102 S/m is obtained by 0.20M.

References

Sasani, M., and Bahramian, A. 2008. High Transparent Sol–Gel derived Nanostructured TiO2 Thin Film. Materials Letters. 62(3): 361-364.

Trong, N., and Ngoc, D. 2015. Preparation of TiO2 Nanocrystals in Anatase and Rutile Phase. Journal of Science, Natural Science. 60(4): 14-20.

Welte, A., Waldauf, C., Brabec, C., and Wellmann, P. 2008. Application of Optical for the Investigation of Electronic and Structural Properties of Sol-Gel Processed TiO2 Films. Thin Solid Films. 516(20): 7256-7259.

Monllor-Satoca, D., Gómez, R., González-Hidalgo, M., and Salvador, P. 2007. The “Direct–Indirect” model: An Alternative Kinetic Approach in Heterogeneous Photocatalysis based on the Degree of Interaction of Dissolved Pollutant Species with the Semiconductor Surface. Catalysis Today. 129(1-2): 247-255.

Porkodi, K., and Arokiamary, S. 2007. Synthesis and Spectroscopic Characterization of Nanostructured Anatase Titania: A photocatalyst. Materials Characterization. 58(6): 495-503.

Bellucci, A. 2004. Overview of the TiC/TiO2 (Rutile) Interface. Solid State Ionics. 172(1-4): 369-375.

Li, G., Yang, L., Jin, Y., and Zhang, L. 2000. Structural and Optical Properties of TiO2 Thin Film and TiO2+2 wt.% ZnFe2O4 Composite Film prepared by R.F. Sputtering. Thin Solid Films. 368(1): 164-167.

Zhao, W., Bala, H., Chen, J., Zhao, Y., Sun, G., Cao, J., and Zhang, Z. 2013. Thickness-Dependent Electron Transport Performance of Mesoporous TiO2 Thin Film for Dye-Sensitized Solar Cells. Electrochimica Acta. 114: 318-324.

Xu, W., Zhu, S., Fu, X., and Chen, Q. 1999. The Structure of TiOx Thin Film Studied by Raman Spectroscopy and XRD. Applied Surface Science. 148(3-4): 253-262.

Acayanka, E., Tiya Djowe, A., Laminsi, S., Tchoumkwé, C., Nzali, S., and Poupi Mbouopda, A. 2013. Plasma-Assisted Synthesis of TiO2 Nanorods by Gliding Arc Discharge Processing at Atmospheric Pressure for Photocatalytic Applications. Plasma Chemistry and Plasma Processing. 33(4): 725-735.

Chiarello, G., Selli, E., and Forni, L. 2008. Photocatalytic Hydrogen Production over Flame Spray Pyrolysis-Synthesised TiO2 and Au/TiO2. Applied Catalysis B: Environmental. 84(1-2): 332-339.

Zhang, X., Li, X., Wu, J., Yang, R., Tian, L., and Zhang, Z. 2009. Simple Sol–Gel Route to Synthesis of Mesoporous TiO2. Journal of Sol-Gel Science Technology. 51(1): 1-3.

Hong, Y., Cheng, K., Weng, W., Song, C., Du, P., Shen, G., and Han, G. 2011. Low Temperature Preparation of TiO2 Nanodot Film on Substrates. Thin Solid Films. 519(15): 4641-4646.

Zhang, Q., Gao, L., and Guo, J. 2000. Effect of Hydrolysis Conditions on Morphology and Crystallization of Nanosized TiO2 Powder. Journal of European Ceramic Society. 20(12): 2153-2158.

Lim C. S. 2014. Effect of pH on the Microstructural Morphology and Phase Transformation of TiO2 Nanopowders Prepared by Sol-Gel Method. Asian Journal of Chemistry. 26(6): 1843-1847.

Halim Affendi, I., Ahmed Azhar, N., Mohamad Saad, P., Alrokayan, S., Khan, H., and Rusop, M. 2015. Electrical and Physical Property of TiO2 Films Prepared at Different Deposition Time. Advanced Materials Research. 1109:524-528.

Ong, W. and Ho, G. 2016. Enhanced Photocatalytic Performance of TiO2 Hierarchical Spheres Decorated with Ag2S Nanoparticles. Procedia Engineering. 141:7-14.

Ansari, S. and Cho, M. 2016. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications. Scientific Reports. 6:25405.

Lewkowicz, A., Synak, A., Grobelna, B., Bojarski, P., Bogdanowicz, R., and Karczewski, J. 2014. Thickness and Structure Change of Titanium (IV) Oxide Thin Films Synthesized by the Sol–Gel Spin Coating Method. Optical Materials. 36(10): 1739-1744.

Mechiakh, R., Sedrine, N., Naceur, J., and Chtourou, R. 2011. Elaboration and Characterization of Nanocrystalline TiO2 Thin Films Prepared by Sol–Gel Dip-Coating. Surface and Coatings Technology. 206(2-3): 243-249.

Lee, W., Lee, D., Song, J., and Min, B. 2005. Effect of Process Parameters on the Efficiency of Dye Sensitized Solar Cells. Metals and Materials International. 11(6): 465-471.

Dhanapandian, S., Arunachalam, A., and Manoharan, C. 2015. Effect of Deposition Parameters on the Properties of TiO2 Thin Films Prepared by Spray Pyrolysis. Journal of Sol-Gel Science Technolology. 77(1): 119-135.

Superkar A.K. 2013. Optical, Structural and Morphological Study of TiO2 Thin film using Sol-gel Spin Coating Techniques. IOSR Journal of Engineering. 3(01): 38-41.

Wong, A., Daoud, W., Liang, H., & Szeto, Y. 2014. The Effect of Aging and Precursor Concentration on Room-Temperature Synthesis of Nanocrystalline Anatase TiO2. Materials Letters. 117: 82-85.

Lau, L., Ibrahim, N., and Baqiah, H. 2015. Influence of Precursor Concentration on the Structural, Optical And Electrical Properties of Indium Oxide Thin Film Prepared by a Sol–Gel Method. Applied Surface Science. 345: 355-359.

Patil, L., Suryawanshi, D., Pathan, I., and Patil, D. 2013. Effect of Variation of precursor concentration on Structural, Microstructural, Optical and Gas Sensing Properties of Nanocrystalline TiO2 Thin Films Prepared by Spray Pyrolysis Techniques. Bulletin of Materials Science. 36(7): 1153-1160.

Ge, L., Li, R., He, S., Chen, H., and Guo, L. 2012. Effect of Titania Concentration on the Grain Boundary Conductivity of Ce0.8Gd0.2O1.9 Electrolyte. International Journal of Hydrogen Energy. 37(21): 16123-16129.

Mohamad Saad, P., Sutan, H., Shariffudin, S., Hashim, H., and Mohd Noor, U. 2015. TiO2 Thin Film via Sol-Gel Method: Investigation on Molarity Effect. IOP Conference Series: Material of Science and Engineering. 99: 012006.

Affenfi, I., Mohammad Saad, P., Salman, A. H., Haseeb A. K., and Mohammad, R. 2015. The Effect of Different Molarity on TiO2 solution Prepared by Sol-Gel Method. Proceedings of Malaysian International Tribology Conference 2015, 308-309.

Downloads

Published

2016-12-01

How to Cite

Harry, A., Sawawi, M., Kashif, M., Sahari, S. K., & Rusop, M. (2016). Optical, Electrical and Structural Investigation on Different Molarities of Titanium Dioxide (TiO2) via Sol-Gel Method. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(12), 87–91. Retrieved from https://jtec.utem.edu.my/jtec/article/view/1441