Development of Human Fall Detection System using Joint Height, Joint Velocity, and Joint Position from Depth Maps
Keywords:
Kinect, Velocity, Joint Height, Depth Maps,Abstract
Human falls are a major health concern in many communities in today’s aging population. There are different approaches used in developing fall detection system such as some sort of wearable, ambient sensor and vision based systems. This paper proposes a vision based human fall detection system using Kinect for Windows. The generated depth stream from the sensor is used in the proposed algorithm to differentiate human fall from other activities based on human Joint height, joint velocity and joint positions. From the experimental results our system was able to achieve an average accuracy of 96.55% with a sensitivity of 100% and specificity of 95%Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Telecommunication, Electronic and Computer Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)