The Removal of Specular Reflection in Noisy Iris Image


  • Shahrizan Jamaludin Centre for Computer Engineering Studies, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
  • Nasharuddin Zainal Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • W Mimi Diyana W Zaki Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia


Iris Recognition, Iris Pattern, Specular Reflection, Iris Image Enhancement


Iris recognition is a biometric system that uses human iris features to determine and verify the identity of human. Other biometric systems are fingerprint, face, ear, voice, gait, blood vessels and many more. A complete iris recognition system includes: iris acquisition, iris segmentation, feature extraction and matching. The main factor to obtain high segmentation and recognition accuracy is the quality of iris pattern. The quality of iris pattern can be affected because of specular reflection. Specular reflection happens during iris acquisition and it can reduce the features of iris pattern. This work is significant since the improved iris pattern can enhance the performance of iris localization, iris segmentation and feature extraction in the iris recognition system. In this paper, the iris image enhancement methods are proposed to remove the specular reflection. UBIRIS v1 and CASIA v4 databases are used for testing. Based on the results, the proposed methods managed to remove the specular reflection without affecting the iris image quality. The proposed methods also obtained fast execution time and low memory


L. Flom, and A. Safir. 1987. Iris recognition system. U.S. Patent No. 4,641,349.

U. von Seelen. IrisCode template compression and its effects on authentication performance. Biometrics Consortium Conference.September 22-24, 2004. 1-18.

R. K. Nayak, and S. Agarwal. 2013. Comparision of iris identification by using modified SIFT and SURF keypoint descriptor. Ph.D. dissertation. National Institute of Technology Rourkela.

J. Daugman. 2004. How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1):21-30.

A. Pathak. 2013. Recognition using SIFT and its variants on improved segmented iris. Ph.D. dissertation. National Institute of Technology Rourkela.

A. Jain. 2005. Biometric Knowledge. Pattern Recognition and Image Processing Lab. Slide. Michigan State University.

A. Muron, and J. Pospisil. 2000. The human iris structure and its usages. Acta. Univ. Palacki. Olomuc. Fac. Rerum. Nat. Phys., 39:87–95.

D. S. Jeong, J. W. Hwang, B. J. Kang, K. R. Park, C. S. Won, D. K. Park, and J. Kim. 2010. A new iris segmentation method for non-ideal iris images. Image and Vision Computing, 28(2):254-260.

Y. D. Khan, F. Ahmad, and M. W. Anwar. 2012. A neuro-cognitive approach for iris recognition using back propagation. World Applied Sciences Journal, 16(5):678-685.

C. W. Tan, and A. Kumar. 2011. Automated segmentation of iris images using visible wavelength face images. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

June 20-25, 2011. 9-14.

K. Y. Shin, G. P. Nam, D. S. Jeong, D. H. Cho, B. J. Kang, K. R. Park, and J. Kim. 2012. New iris recognition method for noisy iris images. Pattern Recognition Letters, 33(8):991-999.

Y. T. Chuang, Y. L. Hong, K. C. Huang, and S. W. Shih. 2013.Autofocus of iris patterns using a triangle aperture. IEEE Transactions on Cybernetics, 4(43):1304-1309.

N. Wang, Q. Li, A. A. A. El-Latif, T. Zhang, and X. Niu. 2014. Toward accurate localization and high recognition performance for noisy iris images. Multimedia Tools and Applications, 71(3):1411-1430.

N. Wang, Q. Li, and A. A. A. El-Latif. 2012. An accurate iris location method for low quality iris images. Fourth International Conference on Digital Image Processing. April 7-8, 2012. 833411-833411.

T. B. Kinsman, and J. Pelz. 2014. Simulating refraction and reflection of ocular surfaces for algorithm validation in outdoor mobile eye tracking videos. Proceedings of the Symposium on Eye Tracking esearch and Applications. March 26-28, 2014. 311-314.

C. C. Tsai, H. Y. Lin, J. Taur, and C. W. Tao. 2012. Iris recognition using possibilistic fuzzy matching on local features. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(1):150-162.

H. L. Wan, Z. C. Li, J. P. Qiao, and B. S. Li. 2013. Non-ideal iris segmentation using anisotropic diffusion. IET Image Processing,7(2):111-120.

A. Bendale, A. Nigam, S. Prakash, and P. Gupta. 2012. Iris segmentation using improved hough transform. Emerging Intelligent Computing Technology and Applications, 2012;408-415.

Z. He, T. Tan, Z. Sun, and X. Qiu. 2009. Toward accurate and fast iris segmentation for iris biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9):1670-1684.

W. Aydi, N. Masmoudi, and L. Kamoun. 2011. New corneal reflection removal method used in iris recognition system. World Academy of Science, Engineering and Technology, 5:898-902.

A. Radman, K. Jumari, and N. Zainal. 2013. Fast and reliable iris segmentation algorithm. IET Image Processing, 7(1):42-49.

B. O’Connor, K. Roy, J. Shelton, G. Dozier. 2014. Iris recognition using fuzzy level set and GEFE. Int. J. Mach. Learn. Comput, 4(3):225-231.

H. Proença, and L. A. Alexandre. 2005. UBIRIS: A noisy iris image database. Image Analysis and Processing. September 6-8, 2005. 970-977.

CASIA Iris Image Database retrieved June, 28, 2015 from




How to Cite

Jamaludin, S., Zainal, N., & W Zaki, W. M. D. (2016). The Removal of Specular Reflection in Noisy Iris Image. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(4), 59–64. Retrieved from