Design and Simulation of a Multi-Sensor System Growing a Plurality of Heater Chips on the Same Dielectric Membrane
Keywords:
Gas Sensors, Heater, Platinum, Electro-Thermal Analysis, Multi-Sensor.Abstract
In micro-sensors, the Micro Hotplate (MHP) is a crucial component, in particularly gas sensors. To control the temperature of the sensing layer, micro-heater is used in metal oxide gas (MOX) sensors as a hotplate. The temperature should be in the requisite temperature range over the heater area. This allows detection of the resistive changes as a function of varying concentration of different gases. Thus, their design is a very important aspect. In this paper, we presented the design and simulation results of a platinum combinative meander-spiral micro heater for a WO3 gas sensor. The objective of this paper is also to model a multi-sensor while growing a plurality of heater chips on the same membrane to improve gas sensors selectivity performance. Four different heating voltages were applied in order to attain four maximum temperatures required to detect O3, H2S, CO and NO2, by a WO3 multi- sensor.Downloads
Published
How to Cite
Issue
Section
License
TRANSFER OF COPYRIGHT AGREEMENT
The manuscript is herewith submitted for publication in the Journal of Telecommunication, Electronic and Computer Engineering (JTEC). It has not been published before, and it is not under consideration for publication in any other journals. It contains no material that is scandalous, obscene, libelous or otherwise contrary to law. When the manuscript is accepted for publication, I, as the author, hereby agree to transfer to JTEC, all rights including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
- All proprietary right other than copyright, such as patent rights
- The right to make further copies of all or part of the published article for my use in classroom teaching
- The right to reuse all or part of this manuscript in a compilation of my own works or in a textbook of which I am the author; and
- The right to make copies of the published work for internal distribution within the institution that employs me
I agree that copies made under these circumstances will continue to carry the copyright notice that appears in the original published work. I agree to inform my co-authors, if any, of the above terms. I certify that I have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and I agree to supply such written permission(s) to JTEC upon request.