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Accurate disparity map estimation is crucial for applications such as 3D reconstruction,
autonomous navigation, and object detection. Local window-based cost aggregation often suffers
from edge fattening and texture inconsistency. This paper introduces a Segment-Side Window-
based (SSW) stereo matching algorithm that combines Truncated Absolute Difference (TAD),
Gradient Magnitude (GM), and Census Transform (CT) to build a robust cost volume. In the
proposed approach, SLIC superpixels guide adaptive aggregation, while Side Window Filtering
(SWF) preserves edges and enhances texture consistency. Winner-Takes-All optimization and
SWEF refinement further improve depth accuracy. On the Middlebury dataset, the proposed method
achieves 13.3% (Nonocc) and 21.8% (All) bad pixel errors, outperforming BF, GF, iGF, and MF in
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both edge preservation and texture robustness.
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l. INTRODUCTION

Stereo vision plays a pivotal role in computer vision, enabling
the extraction of three-dimensional (3D) information from
two-dimensional (2D) stereo images through depth
estimation using disparity maps [1]. A disparity map encodes
the pixel-wise displacement between corresponding points in
a stereo image pair, which directly correlates with depth
perception. Accurate disparity estimation is fundamental to a
wide range of advanced applications, including 3D image
reconstruction, autonomous navigation, medical imaging,
and immersive 3D entertainment systems [2].

The process of disparity map estimation typically follows
a four-stage framework: (1) matching cost computation, (2)
cost aggregation, (3) disparity selection, and (4) disparity
refinement, as shown in Figure 1 [3]. Despite the structured
framework, several challenges persist in stereo vision,
particularly with local window-based cost aggregation
methods. These methods often suffer from edge fattening and
texture inconsistency [4]. Edge fattening occurs when the cost
aggregation window crosses object boundaries, causing a
blurring effect that merges disparities from different depth
layers, resulting in inaccurate depth estimations. Texture
inconsistency, on the other hand, arises in regions with low

or repetitive textures, where matching becomes ambiguous,
leading to noisy or incorrect disparity values. These
limitations are exacerbated by fixed window sizes that fail to
adapt to varying scene structures, further compromising the
reliability of the resulting disparity map.
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Figure 1. Four-stage framework of disparity map estimation

To address these issues, this study proposes an enhanced
local disparity map algorithm using segment-side window-
based cost aggregation and refinement. The method
integrates a side window approach to dynamically adjust the
orientation according to local edge structures. Additionally,
segment-based aggregation preserves object boundaries
while enhancing texture consistency, thereby mitigating the
common pitfalls of local methods. The primary aim of this
research is to improve disparity estimation accuracy while
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maintaining computational efficiency, making it suitable for
real-time applications.

The remainder of this paper is structured as follows:
Section 2 reviews related works on cost aggregation
techniques. Section 3 details the proposed methodology.
Section 4 presents experimental results and performance
evaluations. Finally, Section 5 concludes the study and
suggests directions for future research.

1. RELATED WORKS

This section focuses on the study that has been proposed
with current methods that deals with local window
aggregation and refinement in achieving optimal accuracy for
bad pixel error, texture inconsistency and edge fattening.

Huang et al.[5] introduced a channel-based 2D cost
aggregation method, achieving high efficiency with minimal
computational resources. Its lightweight design suits real-
time applications, but the reliance on 2D aggregation may
struggle with texture inconsistency, as finer details in
complex scenes may not be preserved. Similarly, Zahari et
al.[7] addressed depth edge preservation by using a global
non-local approach. Although it improves accuracy on
standard benchmarks like Middlebury, the method is
computationally intensive and may still exhibit edge fattening
due to the smoothing effect inherent in non-local operations.
One 3D cost aggregation method rethinks stereo matching
through a histogram-based approach, reducing computational
redundancy [9]. While this method offers complexity
reduction, handling high disparity variability remains a
challenge, exacerbating texture inconsistencies in regions
with abrupt depth changes.

Deng et al.[10] incorporated multi-scale information to
enhance accuracy and efficiency. However, the increased
computational demand may still struggle to resolve texture
inconsistencies, especially in fine-detail regions, while abrupt
depth changes can cause edge fattening. Gémez[11] reduced
computational load by combining semi-global and local
guided aggregation modules, balancing efficiency and
accuracy. Despite this, scenes with low texture or high noise
might compromise performance, with the risk of blurring
edges. Huang et al.[12] employed 3D CNNs to achieve high
accuracy in disparity estimation. While robust across
datasets, the method’s computational intensity poses
challenges for real-time applications, and complex scenes
with texture inconsistencies may still result in blurred or
fattened edges. Rahim et al.[13] utilized neural architecture
search to optimize 3D cost aggregation. Despite its flexibility,
the computational expense involved in training may limit
effectiveness in fine-textured regions and edge fattening
during deployment.

Bangunharcana et al.[14] used guided cost volume
excitation to improve real-time stereo matching accuracy.
While fast, the use of 3D CNNs limits its adaptability for edge
devices, and it may not optimally handle dynamic
environments where texture inconsistency becomes a
significant issue. Liu et al.[15] constructed a 3D cost volume
and introduced intra-scale and cross-scale 2D cost
aggregation modules. Although efficient, its multi-scale
approach may still experience computational bottlenecks,
particularly resulting in edge fattening when dealing with
abrupt depth variations. Shamsafar et al.[16] reduced
computational costs using MobileNet blocks, offering a
lightweight solution. However, its performance, reported as

lower than other methods, may not handle fine-textured
regions effectively, contributing to texture inconsistency and
edge blurring. Zeglazi et al.[17] introduced a novel
dissimilarity measure to improve robustness in complex
scenes, yet the method’s additional computational needs may
result in subtle edge fattening, especially in high-noise
environments.

Yang et al.[19] enhanced robustness by detecting and
preserving edges. While it performs well with edges and
textures, computational intensity may still cause edge
widening, particularly when noise is present. Lastly, Yuan et
al.[20] proposed using 1D support windows based on spatial
and gradient information. Though efficient, this method
requires fine-tuning to prevent edge fattening and may
struggle with intricate textures. Overall, the reviewed
methods highlight the ongoing struggle to balance accuracy,
efficiency, and computational complexity in cost aggregation
for stereo matching. While advances have been made,
tackling texture inconsistency and edge fattening remains an
open challenge, necessitating further innovations to achieve
robust and real-time performance.

. METHODOLOGY

Fundamentally, the proposed stereo matching algorithm is
illustrated in Figure 2. To accomplish the objective of this
work, several steps are carried out. The proposed
methodology consists of five primary stages, pre-processing,
matching cost computing , cost aggregation, disparity
optimization and final disparity refinement.

A. Matching Cost Computation

In this framework, the matching cost is computed using a
multi-cost matching approach that integrates three different
cost functions: Truncated Absolute Difference (TAD),
Gradient Magnitude (GM), and Census Transform (CT). This
combination enhances disparity estimation by addressing
various challenges such as illumination changes, textureless
regions, and edge preservation. The TAD function minimizes
sensitivity to outliers by truncating large intensity differences
between corresponding pixels in the left and right images
[21].

The Absolute Difference (AD) measures the pixel intensity
difference between the left (I,) and right (Iz) images as in
Equation (1):

AD(p,d) = [I,(p) = Ir(p — d)] (1)

However, to reduce sensitivity to illumination variations
and outliers, TAD is computed as shown in Equation (2):

TAD (p,d) = min([I,(p) — Irx(p — )], 7) )

where 1 is a predefined truncation threshold that limits the
influence of large intensity differences. This prevents high-
cost values from dominating the disparity estimation.

Meanwhile, GM captures structural variations by
computing gradient differences, ensuring robust performance
in regions with weak textures [22]. Textureless regions (e.g.,
walls, sky) may have similar pixel intensities, making them
hard to distinguish. To address this, the GM is used to capture
edge and structural details as shown in Equation (3):

GM(p,d) = [G,(p) — Gr(p — d)] ©)
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where G (p) and Ggr(p-d) are the gradient magnitudes of the
left and right images at pixel p, calculated using the Sobel
operator. The CT method further strengthens the framework
by encoding local spatial patterns into binary descriptors,
making it highly resistant to illumination variations. The CT
is defined as shown in Equation (4):

CT(p,d) = H(®q
S pr(IL ), UL (@)DEUR(p (4)
—d),Ix(q — d)))

where N, is the neighborhood window around pixel p and
(I,(p),U,(q) is a binary function. This converts local
intensity variations into a binary string. The Hamming
distance H(-) measures the difference between the binary
strings in the left and right images.

Preprocessi Matching Cost:
ng Multi-Cost Matching
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Filter GM +CT
I
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Figure 2. Proposed disparity map algorithm

The final matching cost is obtained by combining these
three measures in a weighted sum, where the contributions of
TAD, GM, and CT are balanced using tunable parameters.
This approach enhances stereo matching performance by
ensuring higher accuracy in textureless areas. The integration
cost is given in Equation (5):

C(p,d) = aTAD(p,d) + fGM(p,d) yCT(p,d)  (5)

where o, B, v are tunable weight parameters that balance the
contributions of TAD, GM, and CT. The appropriate
selection of these parameters is critical, as they directly
influence the quality and robustness of the generated cost
volume. By optimally balancing the complementary strengths
of TAD, GM, and CT, the framework ensures improved
handling of texture inconsistencies, depth discontinuities, and

illumination variations, ultimately enhancing disparity
estimation accuracy. Typically, higher weights are given to
CT and GM in low-texture areas, while TAD is more reliable
for detailed regions.

B. Cost Aggregation

Cost aggregation is employed to reduce correspondence
ambiguity by applying a smooth filter to minimize noise in
the initial raw matching cost. Since information obtained
from a single pixel during cost computation is insufficient for
accurate matching, aggregation is necessary to enhance
reliability. Instead of traditional filtering approaches, the
proposed method employs a segment-side window-based
aggregation technique, which consists of Simple Linear
Iterative Clustering (SLIC) and Side Window Filtering
(SWF).

SLIC is a superpixel segmentation algorithm that clusters
pixels into compact, perceptually meaningful regions based
on color and spatial proximity. By grouping pixels with
similar characteristics, SLIC ensures more reliable cost
aggregation within homogeneous regions while preserving
boundaries at object edges. SLIC performs superpixel
segmentation to group pixels with similar color and intensity
characteristics, ensuring more reliable aggregation within
meaningful regions [23]. The SLIC algorithm minimizes the
following distance measure to assign pixel p to a superpixel
cluster k. SLIC iteratively refines clusters by updating
centroids and reassigning pixels until convergence as given
in Equation (6):

o- [

where d, is the color distance in CIELAB space between
pixel p and superpixel center k while d, is the Euclidean
spatial distance between pixel p and superpixel center k. S is
the nominal superpixel size and m is the compactness
parameter controlling trade-off between color similarity and
spatial proximity.

SWEF is then applied to refine the cost volume by reducing
outliers and preserving object boundaries, which improves
accuracy in disparity estimation. The SWF filtering operation
is given in Equation (7):

SWE(p.d) = ) € wpwp)IC.D) +5P] (1)

where SWF(p,d)is the filtered intensity at pixel p and
disparity range of d. w,, represents the side window, which
consists of pixels positioned at the edge of the window rather
than centered around p. w(p,q) is the weight function,
determined based on spatial and intensity similarities while
C(p,d)) is the matching cost volume and S(p) is the SLIC
value. SWF ensures that filtering is applied along object
boundaries rather than across them, leading to better edge
preservation.

C. 3.3. Disparity Selection
Disparity selection identifies the optimal disparity value for
each pixel by minimizing the aggregated cost. In this process,

a Winner-Takes-All (WTA) strategy is applied, as
represented in Equation(8):
DS(p) = argmingeq,, SWF(p, d) (8)
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where DS(p) is the disparity value with the minimum cost,
SWF(p, d) is the aggregated cost, and D represents the set of
all possible disparity values. The selection of the disparity
map is guided by the best match obtained through the multi-
cost matching computation. While local approaches
accumulate support areas by averaging or distributing them
evenly, their accuracy is sensitive to noise and ambiguous
regions. By integrating the segment-side window-based
aggregation, the proposed method ensures more stable
disparity estimation, particularly in textureless areas.

D. Disparity Refinement

The final stage involves postprocessing and disparity
refinement to enhance the accuracy of the disparity map. In
this framework, left-right consistency checking (LRC) is
applied to identify and eliminate mismatches. Invalid pixel
filling is performed using median interpolation, ensuring that
missing or unreliable disparities are effectively reconstructed
as given in Equation (9):

Dmedian(p) = median {DS(p) | q € N(p)} (9)

where DS(p) is the disparity of neighboring pixels g in the
local window N(p) around pixel p, ensuring robust filling of
invalid or noisy disparity values while preserving depth
edges. Additionally, SWF is used to refine the disparity map
by preserving edges while reducing noise. This refinement
process effectively removes artifacts, enhances edge
definition, and ensures high-quality depth estimation.

V. RESULT AND DISCUSSION

The quantitative evaluation of the proposed SSW stereo
matching method compared to BF, GF, iGF, and MF across
the Middlebury dataset is presented in Table 1. The
assessment is based on the bad pixel error for all pixels (All)
and the non-occluded region (Nonocc). The performance of
SSW  demonstrates  significant improvements  over
conventional approaches in both metrics, indicating enhanced
accuracy in disparity estimation.

Middlebury datasets training quantitative performanzzbtl):sled on average all and nooccluded of bad pixel errors
Image BF GF iGF MF SSW
Middlebury All Nonocc All Nonocc  All Nonocc  All Nonocc All Nonocc

Adirondack 26.9 23 23.8 19.6 23.8 19.6 17.6 13.3 14.2 9.7
Artl 31.8 16.7 29.6 13.8 29.6 13.8 29.4 11 23.6 8.71
Jadeplant 80.6 61.7 75.5 55.1 75.5 55.1 65.2 42.7 54.8 345
Motorcyle 234 16.6 20.3 13.3 20.3 13.3 17.6 9.82 13.6 6.6
MotorcycleE 221 15.2 19.4 12.3 19.4 12.3 17.6 9.79 13.1 6.08
Piano 24 19.7 21.7 17.3 21.7 17.3 171 114 16.3 11.9
PianoL 36.6 333 34.3 30.9 34.3 30.9 30 254 25.9 22.3
Pipes 32.8 20.5 30.2 17.6 30.2 17.6 26.7 12.9 22.6 9.97
Playroom 40.8 25.9 37.8 22.5 37.8 225 36.3 17.6 29.6 14
Playtable 36.8 31.3 34.8 29 34.8 29 27.6 20.6 25.3 19.2
PlaytableP 25.8 19.7 23.3 17.1 23.3 17.1 19.5 114 15.6 9.23
Recycle 22.7 19.3 20.2 16.7 20.2 16.7 145 11.3 12.8 8.93
Shelves 26.4 24.4 24.8 22.6 24.8 22.6 18.6 15.8 17.1 14.7
Teddy 21.8 13.7 19.3 10.9 19.3 10.9 17.2 7.22 14.6 5.95
Vintage 73.7 70.2 68.5 64.5 68.5 64.5 51.2 43.1 443 39.2
Average 335 255 30.7 22.3 30.7 22.3 25.9 16.2 21.8 13.3

The proposed SSW method achieves the lowest average
bad pixel error across all tested images, with an overall error
of 21.8% (All) and 13.3% (Nonocc). This represents a
substantial improvement compared to BF (33.5%, 25.5%),
GF (30.7%, 22.3%), iGF (30.7%, 22.3%), and MF (25.9%,
16.2%). The trend is consistent across individual images, with
SSW consistently outperforming the other methods. Notably,
for complex texture regions, such as Jadeplant and Vintage,
SSW reduces the error margin significantly, achieving 54.8%
(All) and 34.5% (Nonocc) for Jadeplant, compared to MF's
65.2% (All) and 42.7% (Nonocc). Similarly, for Vintage,
SSW records 44.3% (All) and 39.2% (Nonocc), in contrast to
MF’s 51.2% and 43.1% respectively.

These results demonstrate that SSW effectively mitigates
texture inconsistency, which is a common problem in
disparity estimation. Traditional approaches such as BF

and GF suffer from excessive smoothing in texture-rich
regions, leading to loss of structural details. The proposed
method, by contrast, preserves finer details, reducing
disparity errors in areas with complex textures.

In  edge-sensitive regions, SSW shows superior
performance in maintaining sharp transitions. For instance, in
the Motorcycle image, SSW achieves 13.6% (All) and 6.6%
(Nonocc), demonstrating better preservation of object
boundaries compared to BF (23.4%, 16.6%) and GF (20.3%,
13.3%). This improvement stems from SSW’s ability to
minimize edge fattening, a common problem in traditional
filter, in which sharp edges are excessively smoothed,
resulting in incorrect depth estimation.

The qualitative results further confirm the advantages of
SSW over other methods as shown in Figure 3. Visual
comparisons indicate that SSW produces sharper disparity
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maps with clearer object boundaries and fewer erroneous
depth assignments in occluded regions. In high-frequency
texture regions, such as Piano, traditional approaches
introduce blurring, leading to inaccurate depth variations.
However, SSW maintains fine structures with reduced texture
bleeding, thereby ensuring greater accuracy in disparity
reconstruction. For images such as Teddy, where occlusion
handling plays a crucial role, SSW demonstrates superior

Res (
Dl’llﬂ}’)

659 x
Jadeplant 497
(160)

Image Ground truth BF

Left image

741 x
MotorcycleE 497
(70)

707 x
Piano 481
(65)

450 x
Teddy 375
(64)

robustness. The proposed method successfully suppresses
noise in occluded regions while preserving depth transitions,
leading to a smoother and more coherent disparity map. The
non-occluded error for Teddy is 5.95%, the lowest among all
methods, whereas BF records 13.7% and GF 10.9%,

indicating that SSW significantly reduces disparity
inconsistencies caused by occlusion.
GF iGF MF SSwW

Figure 3. Middlebury datasets training qualitative performance

A comparison of different filtering techniques highlights
the strengths and limitations of each approach. BF performs
poorly in texture-dense regions due to its tendency to over-
smooth high-frequency details. GF and its iterative variant,
iGF, offer marginal improvements but still exhibit significant
texture leakage, leading to depth inconsistencies. Meanwhile,
MF demonstrates better edge preservation but remains
susceptible to noise and occlusion artifacts. SSW outperforms
these methods by incorporating a structure-sensitive
weighting mechanism that selectively refines disparities
based on local depth variations.

This approach successfully mitigates texture inconsistency
by adapting to local intensity variations, ensuring that
textures are accurately preserved without introducing
artificial smoothing. Furthermore, SSW effectively addresses
edge fattening by maintaining sharp transitions, leading to
enhanced depth accuracy.

The experimental results confirm the proposed SSW
method offers a significant improvement in disparity
estimation accuracy compared to existing techniques. By
effectively handling texture inconsistency and edge fattening,
SSW achieves lower bad pixel errors and produces higher-
quality disparity maps.

V. CONCLUSION

The proposed methodology introduces a five-stage local
disparity map estimation framework that integrates multi-cost
matching, segment-side window-based cost aggregation, and
structured disparity refinement to address long-standing
issues of edge fattening and texture inconsistency in local
stereo matching. The first contribution lies in the use of multi-
cost matching, where Truncated Absolute Difference (TAD),
Gradient Magnitude (GM), and Census Transform (CT) are
combined to capture complementary intensity, gradient, and
structural information, resulting in a more robust and
discriminative cost volume. The second contribution is the
Segment-Side Window (SSW) aggregation approach, which

combines SLIC superpixel segmentation with Side Window
Filtering (SWF) to preserve object boundaries and enhance
texture robustness while reducing noise in low-texture areas.

The third contribution is an enhanced disparity refinement
process that incorporates left-right consistency checking and
adaptive SWF smoothing to remove residual noise, recover
fine details, and improve accuracy in occluded regions.
Experimental results on the Middlebury benchmark show that
the proposed framework consistently achieves lower error
rates than existing techniques, while qualitative evaluations
demonstrate sharper edges, smoother depth transitions, and
reduced disparity errors in complex scenes. These findings
confirm that the method offers a superior balance between
accuracy and computational efficiency, making it suitable for
high-precision stereo vision applications. Future work will
focus on optimizing the framework for real-time GPU
implementation and exploring hybrid deep learning
integration to enhance scalability across applications such as
industrial inspection, robotics, and 3D scene reconstruction
tasks.
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