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 Accurate disparity map estimation is crucial for applications such as 3D reconstruction, 
autonomous navigation, and object detection. Local window-based cost aggregation often suffers 
from edge fattening and texture inconsistency. This paper introduces a Segment-Side Window-
based (SSW) stereo matching algorithm that combines Truncated Absolute Difference (TAD), 
Gradient Magnitude (GM), and Census Transform (CT) to build a robust cost volume. In the 
proposed approach, SLIC superpixels guide adaptive aggregation, while Side Window Filtering 
(SWF) preserves edges and enhances texture consistency. Winner-Takes-All optimization and 
SWF refinement further improve depth accuracy. On the Middlebury dataset, the proposed method 
achieves 13.3% (Nonocc) and 21.8% (All) bad pixel errors, outperforming BF, GF, iGF, and MF in 
both edge preservation and texture robustness. 
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I. INTRODUCTION 

Stereo vision plays a pivotal role in computer vision, enabling 
the extraction of three-dimensional (3D) information from 
two-dimensional (2D) stereo images through depth 
estimation using disparity maps [1]. A disparity map encodes 
the pixel-wise displacement between corresponding points in 
a stereo image pair, which directly correlates with depth 
perception. Accurate disparity estimation is fundamental to a 
wide range  of advanced applications, including 3D image 
reconstruction, autonomous navigation, medical imaging, 
and immersive 3D entertainment systems [2]. 

The process of disparity map estimation typically follows 
a four-stage framework: (1) matching cost computation, (2) 
cost aggregation, (3) disparity selection, and (4) disparity 
refinement, as shown in Figure 1 [3]. Despite the structured 
framework, several challenges persist in stereo vision, 
particularly with local window-based cost aggregation 
methods. These methods often suffer from edge fattening and 
texture inconsistency [4]. Edge fattening occurs when the cost 
aggregation window crosses object boundaries, causing a 
blurring effect that merges disparities from different depth 
layers, resulting in inaccurate depth estimations. Texture 
inconsistency, on the other hand, arises in regions with low 

or repetitive textures, where matching becomes ambiguous, 
leading to noisy or incorrect disparity values. These 
limitations are exacerbated by fixed window sizes that fail to 
adapt to varying scene structures, further compromising the 
reliability of the resulting disparity map. 

 
Figure 1. Four-stage framework of disparity map estimation 

 
To address these issues, this study proposes an enhanced 

local disparity map algorithm using segment-side window-
based cost aggregation and refinement. The method 
integrates a side window approach to dynamically adjust the 
orientation according to local edge structures. Additionally, 
segment-based aggregation preserves object boundaries 
while enhancing texture consistency, thereby mitigating the 
common pitfalls of local methods. The primary aim of this 
research is to improve disparity estimation accuracy while 
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maintaining computational efficiency, making it suitable for 
real-time applications. 

The remainder of this paper is structured as follows: 
Section 2 reviews related works on cost aggregation 
techniques. Section 3 details the proposed methodology. 
Section 4 presents experimental results and performance 
evaluations. Finally, Section 5 concludes the study and 
suggests directions for future research. 

II. RELATED WORKS 

This section focuses on the study that has been proposed 
with current methods that deals with local window 
aggregation and refinement in achieving optimal accuracy for 
bad pixel error, texture inconsistency and edge fattening.  

 Huang et al.[5] introduced a channel-based 2D cost 
aggregation method, achieving high efficiency with minimal 
computational resources. Its lightweight design suits real-
time applications, but the reliance on 2D aggregation may 
struggle with texture inconsistency, as finer details in 
complex scenes may not be preserved. Similarly, Zahari et 
al.[7] addressed depth edge preservation by using a global 
non-local approach. Although it improves accuracy on 
standard benchmarks like Middlebury, the method is 
computationally intensive and may still exhibit edge fattening 
due to the smoothing effect inherent in non-local operations. 
One 3D cost aggregation method rethinks stereo matching 
through a histogram-based approach, reducing computational 
redundancy [9]. While this method offers complexity 
reduction, handling high disparity variability remains a 
challenge, exacerbating texture inconsistencies in regions 
with abrupt depth changes.  

Deng et al.[10] incorporated multi-scale information to 
enhance accuracy and efficiency. However, the increased 
computational demand may still struggle to resolve texture 
inconsistencies, especially in fine-detail regions, while abrupt 
depth changes can cause edge fattening. Gómez[11] reduced 
computational load by combining semi-global and local 
guided aggregation modules, balancing efficiency and 
accuracy. Despite this, scenes with low texture or high noise 
might compromise performance, with the risk of blurring 
edges. Huang et al.[12] employed 3D CNNs to achieve high 
accuracy in disparity estimation. While robust across 
datasets, the method’s computational intensity poses 
challenges for real-time applications, and complex scenes 
with texture inconsistencies may still result in blurred or 
fattened edges. Rahim et al.[13] utilized neural architecture 
search to optimize 3D cost aggregation. Despite its flexibility, 
the computational expense involved in training may limit 
effectiveness in fine-textured regions and edge fattening 
during deployment. 

Bangunharcana et al.[14] used guided cost volume 
excitation to improve real-time stereo matching accuracy. 
While fast, the use of 3D CNNs limits its adaptability for edge 
devices, and it may not optimally handle dynamic 
environments where texture inconsistency becomes a 
significant issue. Liu et al.[15] constructed a 3D cost volume 
and introduced intra-scale and cross-scale 2D cost 
aggregation modules. Although efficient, its multi-scale 
approach may still experience computational bottlenecks, 
particularly resulting in  edge fattening when dealing with 
abrupt depth variations. Shamsafar et al.[16] reduced 
computational costs using MobileNet blocks, offering a 
lightweight solution. However, its performance, reported as 

lower than other methods, may not handle fine-textured 
regions effectively, contributing to texture inconsistency and 
edge blurring. Zeglazi et al.[17] introduced a novel 
dissimilarity measure to improve robustness in complex 
scenes, yet the method’s additional computational needs may 
result in subtle edge fattening, especially in high-noise 
environments. 

Yang et al.[19] enhanced robustness by detecting and 
preserving edges. While it performs well with edges and 
textures, computational intensity may still cause edge 
widening, particularly when noise is present. Lastly, Yuan et 
al.[20] proposed using 1D support windows based on spatial 
and gradient information. Though efficient, this method 
requires fine-tuning to prevent edge fattening and may 
struggle with intricate textures. Overall, the reviewed 
methods highlight the ongoing struggle to balance accuracy, 
efficiency, and computational complexity in cost aggregation 
for stereo matching. While advances have been made, 
tackling texture inconsistency and edge fattening remains an 
open challenge, necessitating further innovations to achieve 
robust and real-time performance. 

III. METHODOLOGY 

Fundamentally, the proposed stereo matching algorithm is 
illustrated in Figure 2. To accomplish the objective of this 
work, several steps are carried out. The proposed 
methodology consists of five primary stages, pre-processing, 
matching cost computing , cost aggregation, disparity 
optimization and final disparity refinement. 

 
A. Matching Cost Computation 
In this framework, the matching cost is computed using a 

multi-cost matching approach that integrates three different 
cost functions: Truncated Absolute Difference (TAD), 
Gradient Magnitude (GM), and Census Transform (CT). This 
combination enhances disparity estimation by addressing 
various challenges such as illumination changes, textureless 
regions, and edge preservation. The TAD function minimizes 
sensitivity to outliers by truncating large intensity differences 
between corresponding pixels in the left and right images 
[21].  

The Absolute Difference (AD) measures the pixel intensity 
difference between the left (𝐼𝐼𝐿𝐿) and right (𝐼𝐼𝑅𝑅) images as in 
Equation (1): 
 

𝐴𝐴𝐴𝐴(𝑝𝑝,𝑑𝑑) =  [𝐼𝐼𝐿𝐿(𝑝𝑝) −  𝐼𝐼𝑅𝑅(𝑝𝑝 − 𝑑𝑑)] (1) 
 

However, to reduce sensitivity to illumination variations 
and outliers, TAD is computed as shown in Equation (2): 
 

𝑇𝑇𝑇𝑇𝑇𝑇 (𝑝𝑝,𝑑𝑑) = min( [𝐼𝐼𝐿𝐿(𝑝𝑝) −  𝐼𝐼𝑅𝑅(𝑝𝑝 − 𝑑𝑑)], 𝜏𝜏) (2) 
 
where τ is a predefined truncation threshold that limits the 
influence of large intensity differences. This prevents high-
cost values from dominating the disparity estimation. 

Meanwhile, GM captures structural variations by 
computing gradient differences, ensuring robust performance 
in regions with weak textures [22]. Textureless regions (e.g., 
walls, sky) may have similar pixel intensities, making them 
hard to distinguish. To address this, the GM is used to capture 
edge and structural details as shown in Equation (3): 
 

𝐺𝐺𝐺𝐺(𝑝𝑝,𝑑𝑑) =   [𝐺𝐺𝐿𝐿(𝑝𝑝) −  𝐺𝐺𝑅𝑅(𝑝𝑝 − 𝑑𝑑)] (3) 
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where GL(p) and GR(p-d) are the gradient magnitudes of the 
left and right images at pixel p, calculated using the Sobel 
operator. The CT method further strengthens the framework 
by encoding local spatial patterns into binary descriptors, 
making it highly resistant to illumination variations. The CT 
is defined as shown in Equation  (4): 
 
𝐶𝐶𝐶𝐶(𝑝𝑝,𝑑𝑑) = 𝐻𝐻(⨁𝑞𝑞

∈ 𝑁𝑁𝑝𝑝𝜉𝜉(𝐼𝐼𝐿𝐿(𝑝𝑝), (𝐼𝐼𝐿𝐿(𝑞𝑞))⨁𝜉𝜉(𝐼𝐼𝑅𝑅(𝑝𝑝
− 𝑑𝑑), 𝐼𝐼𝑅𝑅(𝑞𝑞 − 𝑑𝑑))) 

(4) 

 
where Np is the neighborhood window around pixel p and 
(𝐼𝐼𝐿𝐿(𝑝𝑝), (𝐼𝐼𝐿𝐿(𝑞𝑞) is a binary function. This converts local 
intensity variations into a binary string. The Hamming 
distance H(⋅) measures the difference between the binary 
strings in the left and right images. 

 
 

Figure 2. Proposed disparity map algorithm 
 

 
The final matching cost is obtained by combining these 

three measures in a weighted sum, where the contributions of 
TAD, GM, and CT are balanced using tunable parameters. 
This approach enhances stereo matching performance by 
ensuring higher accuracy in textureless areas. The integration 
cost is given in Equation (5): 
 
𝐶𝐶(𝑝𝑝,𝑑𝑑) =  𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼(𝑝𝑝,𝑑𝑑) + 𝛽𝛽𝛽𝛽𝛽𝛽(𝑝𝑝,𝑑𝑑)  𝛾𝛾𝛾𝛾𝛾𝛾(𝑝𝑝,𝑑𝑑) (5) 

 
where α, β, γ are tunable weight parameters that balance the 
contributions of TAD, GM, and CT. The appropriate 
selection of these parameters is critical, as they directly 
influence the quality and robustness of the generated cost 
volume. By optimally balancing the complementary strengths 
of TAD, GM, and CT, the framework ensures improved 
handling of texture inconsistencies, depth discontinuities, and 

illumination variations, ultimately enhancing disparity 
estimation accuracy. Typically, higher weights are given to 
CT and GM in low-texture areas, while TAD is more reliable 
for detailed regions. 

B. Cost Aggregation 
Cost aggregation is employed to reduce correspondence 

ambiguity by applying a smooth filter to minimize noise in 
the initial raw matching cost. Since information obtained 
from a single pixel during cost computation is insufficient for 
accurate matching, aggregation is necessary to enhance 
reliability. Instead of traditional filtering approaches, the 
proposed method employs a segment-side window-based 
aggregation technique, which consists of Simple Linear 
Iterative Clustering (SLIC) and Side Window Filtering 
(SWF).  

SLIC is a superpixel segmentation algorithm that clusters 
pixels into compact, perceptually meaningful regions based 
on color and spatial proximity. By grouping pixels with 
similar characteristics, SLIC ensures more reliable cost 
aggregation within homogeneous regions while preserving 
boundaries at object edges. SLIC performs superpixel 
segmentation to group pixels with similar color and intensity 
characteristics, ensuring more reliable aggregation within 
meaningful regions [23]. The SLIC algorithm minimizes the 
following distance measure to assign pixel p to a superpixel 
cluster k. SLIC iteratively refines clusters by updating 
centroids and reassigning pixels until convergence as given 
in Equation (6): 

 

𝐷𝐷 =  ��
𝑑𝑑𝑐𝑐
𝑚𝑚
�
2

+ �
𝑑𝑑𝑠𝑠
𝑆𝑆
�
3

 (6) 

 
where 𝑑𝑑𝑐𝑐 is the color distance in CIELAB space between 
pixel p and superpixel center k while 𝑑𝑑𝑠𝑠 is the Euclidean 
spatial distance between pixel p and superpixel center k. S is 
the nominal superpixel size and m is the compactness 
parameter controlling trade-off between color similarity and 
spatial proximity. 

SWF is then applied to refine the cost volume by reducing 
outliers and preserving object boundaries, which improves 
accuracy in disparity estimation. The SWF filtering operation 
is given in Equation (7): 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑) =  � ∈ 𝑤𝑤𝑝𝑝.𝑤𝑤(𝑝𝑝, 𝑞𝑞)[𝐶𝐶(𝑝𝑝,𝑑𝑑)) + 𝑆𝑆(𝑝𝑝)] 
𝑞𝑞

 (7) 
 

where 𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝,𝑑𝑑)is the filtered intensity at pixel p and 
disparity range of d. 𝑤𝑤𝑝𝑝 represents the side window, which 
consists of pixels positioned at the edge of the window rather 
than centered around p. w(p,q) is the weight function, 
determined based on spatial and intensity similarities while 
𝐶𝐶(𝑝𝑝,𝑑𝑑)) is the matching cost volume and S(p) is the SLIC 
value. SWF ensures that filtering is applied along object 
boundaries rather than across them, leading to better edge 
preservation. 

C. 3.3. Disparity Selection 
Disparity selection identifies the optimal disparity value for 

each pixel by minimizing the aggregated cost. In this process, 
a Winner-Takes-All (WTA) strategy is applied, as 
represented in Equation(8): 

  
DS(p) = arg mind∈dr1SWF(p, d)  (8) 
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where DS(p) is the disparity value with the minimum cost, 
SWF(p, d)  is the aggregated cost, and D represents the set of 
all possible disparity values. The selection of the disparity 
map is guided by the best match obtained through the multi-
cost matching computation. While local approaches 
accumulate support areas by averaging or distributing them 
evenly, their accuracy is sensitive to noise and ambiguous 
regions. By integrating the segment-side window-based 
aggregation, the proposed method ensures more stable 
disparity estimation, particularly in textureless areas. 

D. Disparity Refinement 
The final stage involves postprocessing and disparity 

refinement to enhance the accuracy of the disparity map. In 
this framework, left-right consistency checking (LRC) is 
applied to identify and eliminate mismatches. Invalid pixel 
filling is performed using median interpolation, ensuring that 
missing or unreliable disparities are effectively reconstructed 
as given in Equation (9): 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 {𝐷𝐷𝐷𝐷(𝑝𝑝) | 𝑞𝑞 ∈ 𝑁𝑁(𝑝𝑝)} (9) 
 
where DS(p) is the disparity of neighboring pixels q in the 
local window N(p) around pixel p, ensuring robust filling of 
invalid or noisy disparity values while preserving depth 
edges. Additionally, SWF is used to refine the disparity map 
by preserving edges while reducing noise. This refinement 
process effectively removes artifacts, enhances edge 
definition, and ensures high-quality depth estimation.  

IV. RESULT AND DISCUSSION 

The quantitative evaluation of the proposed SSW stereo 
matching method compared to BF, GF, iGF, and MF across 
the Middlebury dataset is presented in Table 1. The 
assessment is based on the bad pixel error for all pixels (All) 
and the non-occluded region (Nonocc). The performance of 
SSW demonstrates significant improvements over 
conventional approaches in both metrics, indicating enhanced 
accuracy in disparity estimation.

 
Table 1 

Middlebury datasets training quantitative performance based on average all and nooccluded of bad pixel errors 
 

Image 
Middlebury 

BF GF iGF MF SSW 

All Nonocc All Nonocc All Nonocc All  Nonocc All Nonocc 

Adirondack 26.9 23 23.8 19.6 23.8 19.6 17.6 13.3 14.2 9.7 

Artl 31.8 16.7 29.6 13.8 29.6 13.8 29.4 11 23.6 8.71 

Jadeplant 80.6 61.7 75.5 55.1 75.5 55.1 65.2 42.7 54.8 34.5 

Motorcyle 23.4 16.6 20.3 13.3 20.3 13.3 17.6 9.82 13.6 6.6 

MotorcycleE 22.1 15.2 19.4 12.3 19.4 12.3 17.6 9.79 13.1 6.08 

Piano 24 19.7 21.7 17.3 21.7 17.3 17.1 11.4 16.3 11.9 

PianoL 36.6 33.3 34.3 30.9 34.3 30.9 30 25.4 25.9 22.3 

Pipes 32.8 20.5 30.2 17.6 30.2 17.6 26.7 12.9 22.6 9.97 

Playroom 40.8 25.9 37.8 22.5 37.8 22.5 36.3 17.6 29.6 14 

Playtable 36.8 31.3 34.8 29 34.8 29 27.6 20.6 25.3 19.2 

PlaytableP 25.8 19.7 23.3 17.1 23.3 17.1 19.5 11.4 15.6 9.23 

Recycle 22.7 19.3 20.2 16.7 20.2 16.7 14.5 11.3 12.8 8.93 

Shelves 26.4 24.4 24.8 22.6 24.8 22.6 18.6 15.8 17.1 14.7 

Teddy 21.8 13.7 19.3 10.9 19.3 10.9 17.2 7.22 14.6 5.95 

Vintage 73.7 70.2 68.5 64.5 68.5 64.5 51.2 43.1 44.3 39.2 

Average 33.5 25.5 30.7 22.3 30.7 22.3 25.9 16.2 21.8 13.3 

 
The proposed SSW method achieves the lowest average 

bad pixel error across all tested images, with an overall error 
of 21.8% (All) and 13.3% (Nonocc). This represents a 
substantial improvement compared to BF (33.5%, 25.5%), 
GF (30.7%, 22.3%), iGF (30.7%, 22.3%), and MF (25.9%, 
16.2%). The trend is consistent across individual images, with 
SSW consistently outperforming the other methods. Notably, 
for complex texture regions, such as Jadeplant and Vintage, 
SSW reduces the error margin significantly, achieving 54.8% 
(All) and 34.5% (Nonocc) for Jadeplant, compared to MF's 
65.2% (All) and 42.7% (Nonocc). Similarly, for Vintage, 
SSW records 44.3% (All) and 39.2% (Nonocc), in contrast to 
MF’s 51.2% and 43.1% respectively. 

These results demonstrate that SSW effectively mitigates 
texture inconsistency, which is a common problem in 
disparity estimation. Traditional approaches such as BF  

and GF suffer from excessive smoothing in texture-rich 
regions, leading to loss of structural details. The proposed 
method, by contrast, preserves finer details, reducing 
disparity errors in areas with complex textures. 

In edge-sensitive regions, SSW shows superior 
performance in maintaining sharp transitions. For instance, in 
the Motorcycle image, SSW achieves 13.6% (All) and 6.6% 
(Nonocc), demonstrating better preservation of object 
boundaries compared to BF (23.4%, 16.6%) and GF (20.3%, 
13.3%). This improvement stems from SSW’s ability to 
minimize edge fattening, a common problem in traditional 
filter, in which sharp edges are excessively smoothed, 
resulting in incorrect depth estimation. 

The qualitative results further confirm the advantages of 
SSW over other methods as shown in Figure 3. Visual 
comparisons indicate that SSW produces sharper disparity 
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maps with clearer object boundaries and fewer erroneous 
depth assignments in occluded regions. In high-frequency 
texture regions, such as Piano, traditional approaches 
introduce blurring, leading to inaccurate depth variations. 
However, SSW maintains fine structures with reduced texture 
bleeding, thereby ensuring greater accuracy in disparity 
reconstruction. For images such as Teddy, where occlusion 
handling plays a crucial role, SSW demonstrates superior 

robustness. The proposed method successfully suppresses 
noise in occluded regions while preserving depth transitions, 
leading to a smoother and more coherent disparity map. The 
non-occluded error for Teddy is 5.95%, the lowest among all 
methods, whereas BF records 13.7% and GF 10.9%, 
indicating that SSW significantly reduces disparity 
inconsistencies caused by occlusion. 
 

 

 
Figure 3. Middlebury datasets training qualitative performance 

 
A comparison of different filtering techniques highlights 

the strengths and limitations of each approach. BF performs 
poorly in texture-dense regions due to its tendency to over-
smooth high-frequency details. GF and its iterative variant, 
iGF, offer marginal improvements but still exhibit significant 
texture leakage, leading to depth inconsistencies. Meanwhile, 
MF demonstrates better edge preservation but remains 
susceptible to noise and occlusion artifacts. SSW outperforms 
these methods by incorporating a structure-sensitive 
weighting mechanism that selectively refines disparities 
based on local depth variations.  

This approach successfully mitigates texture inconsistency 
by adapting to local intensity variations, ensuring that 
textures are accurately preserved without introducing 
artificial smoothing. Furthermore, SSW effectively addresses 
edge fattening by maintaining sharp transitions, leading to 
enhanced depth accuracy. 

The experimental results confirm the proposed SSW 
method offers a significant improvement in disparity 
estimation accuracy compared to existing techniques. By 
effectively handling texture inconsistency and edge fattening, 
SSW achieves lower bad pixel errors and produces higher-
quality disparity maps. 

V. CONCLUSION 

The proposed methodology introduces a five-stage local 
disparity map estimation framework that integrates multi-cost 
matching, segment-side window-based cost aggregation, and 
structured disparity refinement to address long-standing 
issues of edge fattening and texture inconsistency in local 
stereo matching. The first contribution lies in the use of multi-
cost matching, where Truncated Absolute Difference (TAD), 
Gradient Magnitude (GM), and Census Transform (CT) are 
combined to capture complementary intensity, gradient, and 
structural information, resulting in a more robust and 
discriminative cost volume. The second contribution is the 
Segment-Side Window (SSW) aggregation approach, which 

combines SLIC superpixel segmentation with Side Window 
Filtering (SWF) to preserve object boundaries and enhance 
texture robustness while reducing noise in low-texture areas.  

The third contribution is an enhanced disparity refinement 
process that incorporates left-right consistency checking and 
adaptive SWF smoothing to remove residual noise, recover 
fine details, and improve accuracy in occluded regions. 
Experimental results on the Middlebury benchmark show that 
the proposed framework consistently achieves lower error 
rates than existing techniques, while qualitative evaluations 
demonstrate sharper edges, smoother depth transitions, and 
reduced disparity errors in complex scenes. These findings 
confirm that the method offers a superior balance between 
accuracy and computational efficiency, making it suitable for 
high-precision stereo vision applications. Future work will 
focus on optimizing the framework for real-time GPU 
implementation and exploring hybrid deep learning 
integration to enhance scalability across applications such as 
industrial inspection, robotics, and 3D scene reconstruction 
tasks. 
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