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Abstract—Biological signals have a multiscale nature; hence, 

many multiscale methods for biological signal analysis have 

been developed. One of the most popular multiscale methods is 

the coarse-grained procedure. The coarse-grained procedure 

has some drawbacks, such as a decreased variance of the 

signal, since the coarse-grained procedure eliminates the fast 

temporal scale. As such, other multiscale methods were 

developed to overcome the limitation of the coarse-grained 

procedure. In this study, we proposed a new multiscale method 

that preserves variance of the signal. In our proposed method, 

we split the signal into a new sequencing signal by using the 

multi-distance signal level difference (MSLD) method. In 

MSLD, a set of new signals emerged from the absolute value of 

two data samples' difference at a defined distance. To evaluate 

the MSLD performance, we used Hjorth descriptor as the 

feature extraction method in the output signal. The results 

were classified using multilayer perceptron (MLP). The 

proposed method was tested on five classes of lung sound data. 

The results showed that the proposed method achieved the 

maximum accuracy of 98.76% for the 81 data. The resulting 

accuracy was higher than the multiscale Hjorth descriptor 

using the coarse-grained procedure in our previous research. 

The MSLD could be combined with feature extraction methods 

other than Hjorth descriptor for future studies 

 

Index Terms—Hjorth Descriptor; Signal Level Difference; 

Lung Sound; Signal Complexity. 

 

I. INTRODUCTION 

 

Lung sound is used to diagnose the abnormalities which 

occur in the respiratory system [1]. With the auscultation 

technique, lung sound is heard by the physician and 

analyzed to make a diagnosis. It is believed to be the most 

efficient method because it uses a stethoscope to gain the 

data [2]. This process relies heavily on the expertise and 

experience of the physician. With computer technology and 

subjectivity, the weakness in lung auscultation is 

insurmountable [3]. 

Various techniques were developed to classify lung sound 

automatically. Some researchers used similar methods to 

those used in speech signal processing, such as the Mel-

frequency cepstral coefficients (MFCC) [2], [4], [5]. 

Meanwhile, other researchers treated lung sound like a 

complex signal, so signal complexity measurement methods 

were used to extract the characteristics [6], [7]. The most 

popular signal complexity measurement techniques for lung 

sound signal processing were entropy [8], [9], fractal 

dimension [10], [11] and Hjorth descriptors [12], [13]. Most 

of the lung sound analysis signal complexity measurements 

were carried out on the entire signal, not by multiscale [8], 

[9]. Meanwhile, Villalobos et al. tried to apply the 

multiscale entropy method to the feature extraction in 

alveolitis cases [6]. The multiscale scheme was the coarse-

grained procedure proposed by Costa et al. [14]. Even if the 

method produces a good result, the coarse-grained 

procedure method has many drawbacks [15], which have 

been improved upon by other researchers [16], [17]. 

In previous studies, Hjorth descriptors were used for lung 

sound features extraction [12]. The accuracy result was 

83.95%. Another study measured the Hjorth descriptor on a 

multiscale scheme by using coarse-grained procedure [13]. 

The accuracy result was 95.06%. From the previous 

research, there is still a gap to improve the accuracy since 

the coarse-grained procedure has drawbacks regarding the 

variance decreasing and occurring bias [15]. 

In this study, we proposed the multi-distance signal level 

difference Hjorth descriptor (MSLD) as a feature extraction 

method for lung sound classification. In this method, Hjorth 

descriptors were measured on the absolute of signal 

difference value at some specified distance. The MSLD 

generated relatively steady signal variance, as compared to 

the coarse-grained procedure. It is expected that the 

proposed method produces higher accuracy, as compared 

with Hjorth descriptor measurements on a single-scale 

signal or a multi-scale signal. 

 

II. RELATED WORKS 

 

Various digital signal processing techniques were 

developed for lung sound signal analysis. Lung sound 

signals, like other biological signals, have non-stationary 

and multiscale natures [6]. Most studies were extracting 

lung sound signal characteristics on a single scale. Sengupta 

et al. used empirical mode decomposition (EMD) on lung 

sounds and then performed heart sound detection peak on 

each intrinsic mode function (IMF) to reduce noise from the 

heart sound [4]. The Mel-frequency cepstral coefficients 

(MFCC) were used for further processing [4]. The results 

showed that the MFCC was better than the other cepstral 

methods like the linear prediction cepstral coefficient 

(LPCC). Meanwhile, Mondal, et al. used sample entropy, 

skewness, and kurtosis as a feature for the lung sound 

classification [7]. The accuracy of 92.86% was obtained for 

normal and abnormal lung sounds. Meanwhile, 

instantaneous kurtosis, discriminating function, and 

histogram distortion of sample entropy were used for lung 
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sound feature extraction in [8]. A sample entropy was 

calculated from the sort-time Fourier transform (STFT) of 

lung sounds. Entropy was also used in the study conducted 

by Morillo, et al. [9]. Lung sounds in a chronic obstructive 

pulmonary disease (COPD) patient were analyzed using 

entropy, the mean and median frequency, spectral crest 

factor, entropy, relative power factor, and high order 

frequency moment. The accuracy of 77.6% was obtained 

using Fuzzy C-mean [9]. Other researchers used the fractal 

method for lung sound analysis. Gnitecki and Moussavi 

tested lung sound fractality using the Katz fractal dimension 

(KFD), variance fractal dimension (VFD), and Sevcik 

fractal dimension (SFD)[10]. The results showed that the 

lung sounds have fractal properties. Then, the fractal nature 

was used by other researchers for crackle and squawk 

classification on lung sounds [11]. From several studies 

discussed above, it can be seen that some researchers treat 

lung sounds like a speech signal, while other researchers use 

signal complexity measurements such as entropy and fractal 

for lung sound analysis. 
Some studies have already used the multiscale scheme for 

lung sound analysis.  Multiscale entropy (MSE) was used to 

analyze lung sound produced by alveolitis patients [6]. The 

researcher used the coarse-grained procedure with the scale 

of 3 and sample entropy with tolerance r = 0.1, 0.15, and 0.2 

to analyze the lung sound. Compared to spectral methods, 

MSE produced more differences between the alveolitis 

patient’s lung sound with healthy lung sound. In other 

research, the multiscale scheme was used together with the 

gray-level difference (GLD) [18]. Based on the result of the 

coarse-grained procedure signal, GLD parameters were 

measured for feature extraction process, using 81 lung 

sounds consisting of five classes of data generated with the 

highest accuracy of 91.36% on a scale of 1-10 based on 

gradient entropy as a characteristic. From the research that 

has been reported, multiscale analysis resulted in a higher 

accuracy than the signal analysis on a single scale. 
In our previous study, we used Hjorth descriptor for lung 

sound classification [12]. An accuracy of 83.95% was 

obtained using MLP as a classifier. We tried to improve the 

accuracy by using the multiscale Hjorth descriptor with the 

coarse-grained procedure for multiscale schemes [13]. Using 

the same data and MLP as classifiers, an accuracy of 

95.06% was achieved on a scale of 1-5 and complexity as a 

feature. In a subsequent study, we used a combination of 

EMD and Hjorth descriptors [19]. The resulting accuracy 

was 98.76% with an activity of 10 IMF as a feature. Some 

EMD weaknesses were found, which are the complex 

computation and the high influence from signal shifting 

[20]. In this study, we propose the MSLD method to split 

the signal into a sequence of new signals. MSLD maintains 

the signal variance and utilizes signal shifts to see the 

consistency of the signal. 

 

III. MATERIALS AND METHODS 

 

The proposed lung sound classification system is shown 

in Figure 1. The first process was lung sound normalization; 

then, the MSLD process was performed at a distance of D = 

1-20. Furthermore, each MSLD result calculated the Hjorth 

descriptors as the signal feature. The next step was the 

feature selection to obtain the highest accuracy with the 

smallest number of features. A detailed explanation of the 

proposed system is described in the following section. 

 
 

Figure 1: System design for lung sound classification using MSLD Hjorth 
descriptor 

 

A. Lung Sound Data 

Lung sound data were collected from various sources on 

the internet [21]–[23]. Some data also were taken from a CD 

of the textbook [24]. The collected data were converted to a 

wave file, and then cut into one respiratory cycle and 

resampled in 8000 Hz of frequency sampling. The number 

of lung sound data was 81, which consist of five classes. 

The detail is shown in Table 1. Similar data were used in 

previous studies [12], [13]. 

 
Table 1 

Lung Sound Data 

 

Data class Number of data 

Normal bronchial 18 
Crackle 15 

Asthma 13 

Friction rub 15 
Stridor 20 

 

These five types of lung sound data were chosen because 

they represent different lung sound characteristics. Normal 

bronchial represents the normal lung conditions while the 

other classes represent the lung condition with diseases or 

abnormalities [3]. The normal bronchial sound is soft and 

can be heard on the inspiratory and the expiratory phase [1]. 

The crackle sound is non-musical, discontinuous, in short 

duration, and explosive. A crackle sound is typically 

associated with secretion, e.g., in bronchitis or congestive 

heart failure [1]. Asthma is one of the diseases that produces 

wheezing sounds. Wheezing sounds have the nature of 

musical sounds, are continuous, and have a frequency of 

more than 400 Hz [25]. A Stridor sound usually occurs in an 

upper way obstruction, which produces a loud and dominant 

frequency above 1000 Hz [3]. Meanwhile, friction-rub takes 

place in the case of pleural inflammation, and the sound 

characteristics are nonmusical and explosive [1]. 

The normalization process consists of two stages; namely, 

the amplitude normalization and the mean normalization. 

The mean normalization process was done by Equation (1) 

while the amplitude normalization process was done by 

Equation (2). 

 

𝑦(𝑛) = 𝑥(𝑛) −
1

𝑁
∑ 𝑥(𝑖)𝑁

𝑖=1                 (1)                                                                                                                                    
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𝑦(𝑛) =
𝑥(𝑛)

𝑚𝑎𝑥|𝑥(𝑛)|
                              (2)  

                                                                                                                                           
B. Multi-distance Signal Level Difference (MSLD) 

The multi-distance signal level difference (MSLD) is a 

modification of the gray-level difference (GLD), which is 

proposed by Weszka et al. [26]. GLD was calculated from 

the absolute value of the difference between two adjacent 

pixels in the horizontal, vertical, and diagonal direction. In 

the horizontal direction, GLD was calculated by Equation 

(3).  

 

𝑦(𝑖, 𝑗) = |𝑥(𝑖, 𝑗) − 𝑥(𝑖, 𝑗 + 𝐷)|,   𝐷 = 𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (3) 

   
In MSLD, because the signal used is 1D, the Equation (3) 

is modified into Equation (4).  

 

𝑦(𝑖) = |𝑥(𝑖) − 𝑥(𝑖 + 𝐷)|,    𝐷 = 1,2, … , 𝐾               (4)  

  

We chose 20 as the K value, hence 20 new signals were 

considered as the input for the feature extraction process. 

 

C. Hjorth Descriptor 

One method for measuring the signal complexity is Hjorth 

descriptors [27]. The Hjorth descriptor consists of three 

parameters such as activity, mobility, and complexity. If the 

given signal x (n), where n = 1,2, ..., N then the first order 

variation of x (n) is 𝑑(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 1), while the 

second order variation of x (n) is expressed by 𝑔(𝑛) =
𝑑(𝑛) − 𝑑(𝑛 − 1). The standard deviation of each signal 

sequence is expressed by Equation (5), (6), (7). 

 

𝜎0 = √
∑ 𝑥(𝑛)2𝑁

𝑛=1

𝑁
                        (5)                                                                                                                                                 

𝜎1 = √
∑ 𝑑(𝑛)2𝑁

𝑛=1

𝑁
                        (6)                                                                                                                                               

𝜎2 = √
∑ 𝑔(𝑛)2𝑁

𝑛=1

𝑁
                         (7)  

                                                                                                                                                      

From the equation above, the Hjorth descriptors 

parameter are calculated as follows: 

 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝜎0
2                                      (8)  

                                                                                                                                                    

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜎1
2/𝜎0

2                              (9)   

                                                                                                                               

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = √
𝜎2

2

𝜎1
2 −

𝜎1
2

𝜎0
2                        (10)                                                                                                                          

 

The three parameters were calculated on an MSLD signal 

results and obtained 60 features. The highest accuracy from 

the features was selected by reducing the distance on used 

MSLD.  

 

D. Classifier and Validation 

As a classifier, we used multilayer perceptron (MLP), 

which is a neural network with the simplest architecture 

consisting of three layers: the input layer, hidden layer, and 

output layer. The number input is equal to the number of 

features from the feature extraction result, while the number 

of the output layer is equal to the number of class 

classification results [28]. The present study used a varying 

number of hidden neurons to observe which MLP 

configuration produces the highest accuracy. 

The MLP is a supervised learning artificial neural 

network (ANN). Therefore, a three-fold cross-validation 

(NFCV) was used as the validation process. Due to the 

amount of data were at least 13, the selected data of each 

three-fold were four to five for every dataset. The 

performance parameter is the accuracy value of the amount 

of data recognized correctly divided by the total number of 

data. The other parameters used are the sensitivity and 

specificity values.  

 

IV. RESULTS AND DISCUSSION 

 

The D value used was 1-20; hence, there were 60 features. 

Sample results of MSLD for D = 1-5 on the normal 

bronchial signal is shown in Figure 2. For D = 1, the signal 

sample data difference is relatively small, so the generated 

results of MSLD has a low amplitude. The high sampling 

frequency of 8000 Hz makes the differences between two 

sequential data relatively low. When the D value is higher, 

the signal amplitude of the MSLD result also has a greater 

amplitude. 

  

 
 

Figure 2: Normal bronchial sound and MSLD result for D =1-5 
 

The proposed feature extraction method was tested by 

using the MLP with an altered number of hidden neurons 

and three-fold cross validation. Testing was done for the 

entire features (60 features) and one Hjorth descriptor 

parameter for D = 1-20 (20 features). The test results are 

shown in Figure 3.  

 

 
 

Figure 3: Effect of hidden neuron number to the accuracy 
 

The best accuracy for the entire feature is 97.53% for the 

hidden neurons = 5, 15, 30, 35, 40, and 45. For the Activity 

feature, the best accuracy is 97.53% for the hidden neurons 

= 5, and hidden neurons = 0 for the Complexity feature. 

However, the best accuracy for mobility only reached 

96.3%. Although the results for overall features are better 

than the activity and the complexity feature, a large number 

of features were used. Feature reduction was tested by using 
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MLP N-5-5. The obtained result is showed in Figure 4. 

 
 

Figure 4: Effect of feature reduction by using N-5-5 MLP 

 

Figure 4 shows that feature reduction increased the 

accuracy of the system. With the distance of D = 1-10, the 

activity feature individually produced the highest accuracy 

of 98.76%. Further, feature reduction (D = 1-5) decreased 

the accuracy of the system. An activity of D = 1-10 is 

considered better than D = 1-15 for a smaller number of 

features.  

 

 
 

Figure 5: Mean ± std of Activity for D=1-10 for each class 

 

Figure 5 displays the average value of activity for D = 1-

10 in each data class. It shows that the greater the value D, 

the bigger the value of the activity will be. This result is 

consistent with Figure 2, which shows that the greater the 

value of D, the more the signal amplitude value from MSLD 

increases. The activity feature is mathematically the same as 

the signal variance: when amplitude changes rapidly, then 

the variance value also increases. 

 
Table 2.  

Confusion matrix for the highest accuracy 

 

Data 
Classified as 

Bronchial Asthma Crackle Friction rub Stridor 

Bronchial 18 0 0 0 0 
Asthma 0 13 0 0 0 

Crackle 0 0 15 0 0 

Friction rub 0 0 1 14 0 
Stridor 0 0 0 0 20 

 

The classification results in the highest accuracy 

conditions are shown in Table 2. An error occurred in one 

data set; friction rub was classified as crackle. The 

sensitivity value of friction rub became 93.33%, while the 

specificity value of crackle was 98.45%.  

In general, the proposed method performed better than the 

Hjorth descriptor measurement signal on the entire signal 

and the multiscale scheme by using a coarse-grained 

procedure [12], [13]. 

The comparison between single-scale, multiscale, EMD, 

and MSLD Hjorth descriptors are described in Table 3. 

 
Table 3.  

Comparison of features and accuracy with previous research 

 

 Original features 

 Single scale Multiscale EMD MSLD 

Reference 
[12] [13] [19] 

Proposed 

method 

Number of 
data 

81 81 81 81 

Scale 1 20 10 20 

MLP 
configuration 

3-45-5 60-15-5 20-35-5 60-5-5 

Number of 

features 
3 60 30 60 

Feature used Activity, 

Mobility, 
Complexity 

Activity, 

Mobility, 
Complexity 

Activity, 

Mobility, 
Complexity 

Activity, 

Mobility, 
Complexity 

Accuracy 83.95% 90.12% 96.3% 97.53% 

 Feature reduction 

Scale 1 5 10 10 

MLP 

configuration 
3-45-5 5-15-5 10-25-5 10-5-5 

Number of  

features 
3 5 10 10 

Feature used Activity, 
Mobility, 
Complexity 

Complexity Activity Activity 

Accuracy 83.95% 95.06% 98.76% 98.76% 

 

The Hjorth descriptor measurement for the entire signal 

produced three signal features, and the maximum accuracy 

was 83.95%. We could not reduce the number of features 

because it would decrease the accuracy [12]. Meanwhile, on 

the multiscale Hjorth descriptor, feature reduction improves 

the accuracy to 95.06% with five number features, and the 

complexity becomes the dominant feature [13]. 

The coarse-grained procedure used in multiscale Hjorth 

descriptors, as used in multiscale entropy, are expressed as 

the Equation (11) [14], 

 

yj
(τ)

=
1

τ
∑ xi

jτ
i=(j−1)τ+1   ,   1 ≤ j ≤

N

τ
        (11)                                                                                          

 

where xiis is the input signal while yj
(τ)

 is the output signal 

on a scale τ. The output signal yj
(τ)

on a scale τ is equal to the 

average of τ sequence number data samples of the signal x. 

This method has many disadvantages that many methods 

were developed to fix, such as composite multiscale entropy 

(CMSE) [17] or modified multiscale entropy (MMSE) [16]. 

One drawback of the coarse-grained procedure is that the 

signal variance value is decreased, which produces bias in 

the calculation parameters of the signal on the following 

scale [15]. Comparison of the variance in the coarse-grained 

and MSLD procedures is shown in Figure 6. 

 

 
 

Figure 6: Comparison of variance value for MSLD and the coarse-grained 
procedure 
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The variance of the signal was measured at random along 

the 30,000 samples with initial variance value = 1. It can be 

seen that the variance of the signal using the coarse-grained 

procedure decreases with an increase in scale while the 

variance of MSLD is relatively fixed.  

MSLD Hjorth descriptor produced the same accuracy 

with the EMD-Hjorth descriptor. Due to computation 

complexity and signal shifting effect as aforementioned, 

EMD did not become our choice. MSLD Hjorth descriptor 

generates higher accuracy compared with the multiscale 

Hjorth descriptor, and feature reduction improves the 

accuracy to 98.76%. Compared with multiscale Hjorth 

descriptor, MSLD Hjorth descriptor needs more features to 

produce the maximum accuracy. MSLD method can be used 

to measure other parameters and provides an overview of 

coexistence of two data samples at a certain distance. 

Consistency signals can be tested as measured by a series of 

a predetermined distance. The data cutting effect, the signal 

shifting, and the frequency sampling at MSLD were not 

tested in this study. They can be another interest for future 

studies. 

 

V. CONCLUSION 

 

This paper presented the classification concern of lung 

sounds by using MSLD Hjorth descriptor. The use of MSLD 

on the Hjorth descriptor measurement can improve the 

accuracy of lung sound classifications. One of MSLD 

advantages is a simple computation by counting the absolute 

value of the difference sample data signal at a certain 

distance. The number of features used less; hence, less 

computation time is needed. In the present study, the 

features reduction is used to reduce the amount of distance 

by using a single parameter of Hjorth descriptor. In a future 

study, a better feature selection method can be employed to 

obtain distance and Hjorth descriptors parameter 

combination to produce maximum accuracy 
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