
 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 2 153

Current Practices of Dynamic-Structural Testing in

Programming Assessments

Rohaida Romli, Emylda Arni Abdurahim, Musyrifah Mahmod, Mazni Omar
School of Computing, College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia.

aida@uum.edu.my

Abstract— Automatic Programming Assessment (or APA) has

been known as an important method to automatically mark and

grade students’ programming exercises. It has been gaining a lot

of attention from many researchers either to emphasize on the

aspect of static analysis or dynamic testing (functional and

structural testing). To date, not many recent studies attempted to

focus on the context of structural testing even though, it is key in

the software testing industry. Hence it becomes one of the most

critical aspects of testing to be considered. Besides that, current

literatures also lack information on APA’s detailed practices.

Thus, we conducted a preliminary study to investigate the test

adequacy criteria that have been commonly employed in the

current practices of programming assessments which are

applicable only to dynamic-structural testing. Specifically, this

refers to testing that needs a program execution and focuses on

the logic coverage of the tested program. In this paper, we reveal

the means of conducting the preliminary study and its analysis

and findings. From the findings, it has been discovered that most

educators are commonly adopting the identified structural code

coverage in programming assessments and even have a great

leaning towards allowing those criteria to be considered in

implementing APA.

Index Terms— Automatic programming assessment;

Structural testing; Structural code coverage.

I. INTRODUCTION

Programming assignments and problems are considered as

important elements in software engineering and computer

science disciplines. Programming assignments contribute as a

means of exposing students and getting them familiar with

programming languages as well as allowing them to practise

programming fundamentals and concepts effectively.

Programming assessment tasks are commonly placed on

educators or instructors and other resources so as to assess the

level of correctness of programming assignments. The

principles and techniques of software testing will be utilized to

judge the quality level of each programming assignment.

The huge number of students in a single class results in a

big number of programming assignments or exercises. Thus,

educators or instructors need extra time to manage these

programming assessments. Besides that, feedback provided to

students through marking is commonly limited, and often late

and outdated, particularly to the topic dealt with in the

assignment [1]. Therefore, Automatic Programming

Assessment (APA) would overcome such problems by

providing students with assessment results immediately after

submitting their programming assignments or exercises.

Nowadays, most educators have encountered that activities

dealing with assessing students’ programming assignments are

burdensome and significantly increase their current workloads.

Therefore, APA has attracted more attention from researchers

in the field of teaching and learning programming [2]. APA is

typically based on testing techniques [3], and requires a test

data generation process to perform a dynamic testing on

students’ programs [4]. Dynamic testing involves the

execution of a program with test data and the comparison of

the results with the expected output, which must satisfy the

users’ requirements [5]. The correctness, execution efficiency

and testing ability of students can be automatically and

effectively assessed by using dynamic testing [2]. In addition,

existing studies, particularly in the area of programming

assessments, still have only limited discussions on current

practices in conducting the assessments [6]. Thus, this study

attempts to investigate the current practices of dynamic-

structural testing in programming assessments. Specifically,

this study mainly seeks to identify the test adequacy criteria

used for dynamic-structural testing and to verify the identified

criteria in the context of current practices in programming

assessments. Hence, this paper discusses the preliminary study

that was conducted to gauge the required details.

The content of the remaining sections are organized as

follows: Section 2 details the code coverage that are

commonly employed in dynamic-structural testing. Section 3

provides details of the survey conducted for the preliminary

study. Section 4 reveals the analysis and findings of the study.

Finally, Section 5 concludes the paper.

II. CODE COVERAGE METRICS FOR DYNAMIC-STRUCTURAL

TESTING

Software testing is an important technique to measure the

quality of software product assurance [7]. The two important

goals of software testing are to ensure the system being

developed is according to the customers’ requirements and

also to reveal bugs [8]. The establishment of good testing

skills must begin as early as possible in the computing

curricula [9]. According to Zhu[10], the central problem of

software testing is “What is a test data adequacy criterion?”,

which can be defined as the rules that are needed in order to

determine whether a software has been tested sufficiently or

not.

Software testing is commonly categorized into two parts:

static testing and dynamic testing [11]. Dynamic testing falls

Journal of Telecommunication, Electronic and Computer Engineering

154 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 2

into two parts that are functional testing (black-box testing)

and structural testing (white-box testing) [12][13]. Functional

testing emphasizes inputs, outputs and principle functions of a

software module [14]. Meanwhile, structural testing is a

method of testing that depends on the internal structure of

software applications [11]. Structural testing is the most

common form of assessment to determine the coverage of the

program logic or so-called coverage metrics [15]. General

classifications of coverage metrics include [10][11][15][16]:

1) Statement coverage: this type of coverage needs each

statement in a program to have been executed and

implemented at least once.

2) Path coverage: path coverage depends on a program

source code to find every way possible for each

program through which it passes or executes all the

possible paths.

3) Branch coverage: it requires all branches and decisions,

which must be taken in a program to be passed at least

once.

4) Condition coverage: condition coverage is evaluating

each condition as true and as false at least once

5) Multiple condition coverage: this type of coverage

reports all completed combinations of other coverage

such as branch coverage, condition coverage, decision

coverage and statement coverage.

6) Modified Condition/Decision Coverage (MC/DC): the

decision has taken all possible outcomes at least once

and, it is said that both the true and the false branches

have been covered.

7) Loop coverage: loop coverage considers each loop in

the control flow program will be executed in zero time,

just once, or more than once in a row.

III. THE SURVEY

In this section, a discussion on the research design of a

survey conducted for the preliminary study, its respondents

and the survey instruments used are detailed out. The

conducted preliminary study aims to investigate the current

practices of dynamic-structural testing in programming

assessments. The specific objectives include:

1) to identify the test adequacy criteria used for dynamic-

structural testing

2) to verify the identified criteria in the context of

programming assessments current practices as well as

for a future consideration if APA is implemented.

The respondents of the survey were educators who have

been teaching programming courses at one of the public

universities in Malaysia. The respondents were selected on the

basis of their expertise in the subject investigated. Due to the

time constraint and the fact that the survey required minimal

interference from researchers, (particularly to understand the

identified structural code coverage) only one university was

selected. The survey received a total of thirteen responses.

A questionnaire was designed to collect the related data and

information. The close-ended questions ask the respondents to

make choices among a set of alternatives given by the

researchers. The investigated structural code coverage in

programming assessments were based on the information

collected from literature survey.

The questionnaire consisted of thirteen questions that are

divided into three parts: background (demographic of

respondents), the adoption of structural code coverage in

programming assessments and the future consideration for the

structural code coverage in implementing APA. The questions

that involved ratings used the Likert Scale format. We used

four types of estimations for the Likert Scale, ranging from 1

to 5 and 1 to 4. The first type was frequency estimations which

consisted of five values; almost never, some of the time, about

half of the time, most of the time and almost always. The

second type was priority estimations, which used the scale: not

a priority, low priority, moderate priority, high priority, and

essential. The third type was agree or disagree estimation

which used the scale; strongly disagree, somewhat disagree,

neither agree nor disagree, somewhat agree and strongly

disagree. The fourth type was critical estimation which used

the four values; not critical, low critical, moderately critical

and high critical.

Figure 1 shows the design of the preliminary study. Since

the targeted respondents were among the lecturers who have

been teaching programming courses at higher learning

institutions and were categorized as the specific target groups,

its sampling design was based on a purposive sampling (non-

probability) technique. The unit of analysis was individual

response, as the study treats each lecturer’s response as

individual data source. This study employed the study setting

known as field study that is in non-contrived settings. This

means that the preliminary study was done in the natural

environment where work proceeded normally and the factors

to be studied were not controlled [17]. In this situation, the

study requires minimal interference by the researcher. This

study identified the time horizon as a cross-sectional study

because the data were collected only once and no other

consecutive data collection activities will be carried out. In

terms of the measurement, as stated earlier, the collected data

based on a survey using the questionnaire, the constructs and

items were measured using scale (itemized rating scale). In

order to achieve the identified objectives of the study,

descriptive statistics were used as the data analysis technique.

The statistical data derived from this preliminary study were

analysed based on Descriptive Statistics – Frequencies

(graphing frequencies) by using Microsoft Office Excel 2010.

IV. FINDINGS AND DISCUSSION

The following sub-section discusses the analysis and

findings of the conducted preliminary study that are based on:

demography of respondents, adoption of structural code

coverage in the current practices of programming assessments

and future considerations for automated programming

assessment.

A. Demography of Respondents

The demography of respondents consisted of five questions:

level of appointment, experience in teaching programming

courses, type of programming language applied in teaching a

programming course, programming course(s) that have been

taught, and the current means of marking students’

programming exercises. Figure 2 shows the frequency of

responses for each question.

Current Practices of Dynamic-Structural Testing in Programming Assessments

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 2 155

Figure 1: Design of the preliminary study

From the result tabulated in Figure 2, it can be seen that

most of the educators or instructors in the university are

lecturers (that is about 77%) and merely 23% of them are

senior lecturers. This might due to the fact that programming

courses commonly require a lot of effort devoted to ensuring

students are able to understand very well all the concepts and

principles of programming, which will be the basis for higher

level courses. Hence, the younger generation of lecturers

seemed likely to be more passionate in dealing with this kind

of circumstances. It is also shown that most of the educators

have more than three years of specific experience in teaching

programming courses, and Java has become the most popular

programming language applied in teaching the courses.

Almost 50% of the educators are specifically focused on

teaching an introductory programming course as compared to

data structure and advanced programming courses. In terms of

the current means of marking students’ programming

exercises, about 72% of them appeared to be manually

marking printed documents rather than manually marking via

the softcopy version of programming solutions (that is about

28%).

B. The adoption of structural code coverage in

programming assessments

This sub-section reveals the findings in terms of the

frequency of adopting structural code coverage in the current

practices of programming assessments, level of prioritization

and scoring of each code coverage metrics, and overall scoring

in structural testing. This part of the investigation aims to

achieve the first objective of this study.

As mentioned earlier, among the structural code coverage

metrics considered in this study include statement coverage,

path coverage, branch coverage, condition coverage, multiple

condition coverage, MC/DC and loop coverage. As shown in

Figure 3, in terms of the adoption of structural code coverage

in the current practices of programming assessments, the

highes response is narrowed down to the frequency of most of

the time, particularly for the path coverage (about 46%),

condition coverage (about 39%), loop coverage (about 39%)

and branch coverage (about 31%). In general, a very small

number of the educators responded with a frequency of almost

never for the considered structural code coverage metrics,

except for the MC/DC. This might be because they were not

Figure 2: Demography of respondents

77%

23%

Level of appointment

Tutor

Lecturer

Senior Lecturer

Associate Professor

Professor

8%

92%

Experience in teaching programming courses

Less than 1 year

1-2 years

2-3 years

More than 3 years

61%11%

17%

11%

Programming language applied in teaching

programming course

Java

C

C++

Other

47%

21%

32%

Programming course that have been taught

Intro. to Programming

Advanced

Programming

Data Structure

Other

72%

28%

The current way of marking students programming

exercises
Manually marking

printed documents

Manually marking a

softcopy of

programming solution
Semi automated

marking

Fully automated

marking

Other

Purpose of

the study

Descriptive

Extend of

researcher

interference

minimal

interference

Study

setting

Non-

contrived

(field

study)

Unit of

analysis

Individuals

Sampling

design

Non-

probability

(purposive

sampling)

Time

horizon

Cross-

sectional

Measureme

nt and

measure

Scaling

Data

collection

method

Questionnaire

D
a

ta
 A

n
a

ly
sis (D

e
scr

ip
tiv

e S
ta

tistics)

Journal of Telecommunication, Electronic and Computer Engineering

156 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 2

really familiar with that type of code coverage metrics.

Overall, it can be concluded that most of the educators quite

often consider structural code coverage in programming

assessments.

Figure 4 shows the findings in terms of to what extent

educators prioritize each of the structural code coverage

metrics in programming assessments. The findings indicate

that path coverage and condition coverage are among the

essential coverage metrics applied in programming

assessments as compared to other coverage metrics. If we put

in a ranking on the prioritization level of the structural code

coverage metrics, the sequence will be (1) path coverage, (2)

condition coverage, (3) loop coverage, (4) statement coverage,

(5) branch coverage, (6) multiple coverage, and (7) MC/DC.

As shown in Figure 4, it seems likely MC/DC is one of the

structural code coverage metrics that is anomalous among the

educators.

Figure 5 depicts the findings in terms of the current means

of scoring each of the structural code coverage metrics in

programming assessments. The score was given as a range of

values from 0 to 100. The score with the highest frequency is

50 marks, with path coverage at about 39% and around 29%

for multiple condition coverage, branch coverage, condition

coverage and loop coverage. It was also found that around

29% of educators rated the score of 60 marks for both of the

branch and condition coverage types and 31% particularly for

loop coverage. Overall, on average, the structural code

coverage criteria contribute 60 marks or lower to the 100

marks allocated for students’ programming exercises.

In terms of the overall scoring for structural testing, Figure

6 reveals the findings. The highest number of respondents

(that is about 31%) provides an overall scoring of 50 marks for

structural testing. Around 24% of them seemed to score 70

marks and the remaining respondents appeared to score marks

lower than 50. As a conclusion, it can be said that the

preferred total score allocated for structural testing is 50 marks

or less.

Figure 3: Frequency of adopting the structural code coverage in programming assessments

Figure 4: Level of prioritization the structural code coverage in programming assessments

Figure 5: The current means of scoring the structural code coverage in programming assessments

0 0
1 1

2

5

0
1

2 2 2

5
4 4

5

3
4

2 2 2
1

4

6

4
5

3

1

5

3
2 2

3

1 1

3

0
1
2
3
4
5
6
7

Statement

coverage

Path coverage Branch

coverage

Condition

coverage

Multiple

condition

coverage

MCDC Loop coverage

N
o

.
o

f
r
e
sp

o
n

d
e
n

ts

Almost Never

Some of the time

About half of the time

Most of the time

Almost always

0 0 0 0
1

0 00 0
1 1

2
3

0

7

5
6

4

2 2

5

2 2 2 2

4
3

44

6

3

6

2

0

4

0

2

4

6

8

Statement

coverage

Path coverage Branch coverage Condition

coverage

Multiple

condition

coverage

MCDC Loop coverage

N
o

.
o

f
r
e
sp

o
n

d
e
n

ts

Not a priority

Low priority

Moderate

priority
High priority

Essential

0

2

4

6

Statement coverage Path coverage Branch coverage Condition coverage Multiple condition

coverage

MCDC Loop coverage

N
o

.
o

f
r
e
sp

o
n

d
e
n

ts

0 10 20 30 40 50 60 70 80 90 100

Current Practices of Dynamic-Structural Testing in Programming Assessments

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 2 157

Figure 6: Overall scoring in structural testing

C. Future Consideration in Implementing APA

This sub-section discusses the future consideration for each

of the structural code coverage metrics in implementing APA.

The consideration includes the importance of adopting the

structural code coverage metrics, weighted scoring of the

critical level of adopting the structural code coverage metrics,

and scoring of the structural code coverage metrics. In

addition, it also relates to how to allocate the total marks for

each of the testing techniques used by educators. The findings

of this section will meet the second objective identified in

Section 3.

Figure 7 reveals the frequency of the different level of

importance of adopting the structural code coverage in

implementing APA. As shown in Figure 7, for almost all the

structural code coverage metrics except for the loop coverage,

the highest rating is somewhat agree with percentage values

from 39% to 62%. Branch coverage and MC/DC seem to be

among the preferred structural coverage metrics. It is also

depicted that about 60% of the respondents rated strongly

agree on the loop coverage metrics. In conclusion, it seems

that all structural code coverage metrics are favored by the

respondents, to be included in future APA.

Figure 8 illustrates the findings on the weighted scoring of

the critical level of adopting the structural code coverage in

implementing APA. As shown in the figure, the highest rating

with the critical level of moderately critical belongs to

MC/DC that is about 54% and about 46% for the path

coverage, condition coverage, branch coverage. It is also

shown that none of the respondents rated on the critical level

of not critical for all structural code coverage metrics. Thus, it

can be summarized that each of the individual educators prefer

to have full authority to assign the weighted value in

identifying the critical level of the structural code coverage if

APA is implemented.

Figure 9 shows the scoring value for each of the structural

code coverage metrics for future implementation of APA. It

seems likely the finding shows a similar trend as the one

shown in Figure 6, which emphasizes on the scoring value as

applied in current practices of programming assessments. If

APA is implentented, the highest rating is shown to focus on

the score of 60, particularly for the condition coverage, loop

coverage and multiple condition coverage with their respective

percentage values ranging from 23% to 31%. From this

finding, it can be concluded that the educators or lecturers

desire to allocate a score of between 50 and 90 marks for

structural code coverage if APA is implemented.

Figure 10 illustrates the result of overall scoring for

programming assessment. The overall scoring for

programming assessment is based on testing techiques. The

testing techniques involved are static analysis, dynamic testing

(functional or black box testing) and dynamic testing

(structural or white box testing). Based on Figure 10, it can be

concluded that the educators wish to allocate more marks to

structural or white box testing as compared to functional or

black box testing, and static analysis. This implies that the

educator will give marks depending on the structure of

program execution. In addition, the educators gave a slightly

lower scoring for static analysis where static aspects of a

program basically refers to the syntax or lexical aspect of a

code [6]. For future implementation of APA, the various

scoring values assigned by respondents show that educators

wish to allocate the total marks for each of the testing

techniques according to their own preferences.

Commonly, programming exercises are constructed based

on objectives of each topic in a course syllabus [6]. Regarding

the adoption of structural code coverage in programming

assessments, educators may employ structural testing criteria

in programming assessments in terms of statement coverage,

path coverage, branch coverage, condition coverage, multiple

condition coverage, MC/DC and loop coverage. Findings from

the survey reveal that, the path coverage, statement coverage,

branch coverage and loop coverage are among the coverage

metrics that were ranked high by the respondents. This is

because most of the content of introductory programming

syllabi consists of sequential, selection, and iteration control

structures. For novice students who are learning programming,

they must at least understand and acquire related principles

and concepts of these control structures so as to ensure they

would be able to master the skills of programming well at the

end the course.

In terms of the overall scoring of structural testing, most of

the respondents agreed to allocate about half of the total

marks. The remaining marks are for static analysis and

functional testing. This implies that the aspect of considering

structural testing in programming assessments has become an

important criterion in judging the level of students programs’

correctness. This survey also included the future consideration

of each of the structural code coverage metrics for

implementing APA. The findings reveal that the importance of

adopting the structural code coverage metrics in implementing

APA can be ranked by order of importance, as (1) loop

coverage, (2) Statement coverage, (3) Path coverage, (4)

MC/DC, (5) Multiple coverage, (6) Condition coverage, and

(7) Branch coverage.

0 0 0

1

2

4

0

3

1 1 1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

N
o

.o
f

r
e
sp

o
n

d
e
n

t
Score value

Journal of Telecommunication, Electronic and Computer Engineering

158 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 2

Figure 7: Importance of adopting the structural code coverage

Figure 8: Weighted scoring the critical level of adopting the structural code coverage

Figure 9: Scoring for each of the structural code coverage

Figure 10: Overall scoring for programming assessment for each of the testing techniques

V. CONCLUSION

The conducted survey of the preliminary study reveals that

most of the identified structural code coverage metrics have

been employed in the current practices of programming

assessments. In addition, they are being favored to be included

in implementing APA in future research. In terms of the

allocation of total marks for each of the testing techniques, the

findings show that most of the educators prioritize white-box

testing (dynamic testing) criteria more than static analysis and

black-box testing (dynamic testing) criteria. This can justify

the fact that structural testing plays an important role in

programming assessments. Even in APA, most of the focus is

more towards functional/black-box testing. Overall, we can

deduce that the statement, condition, path and loop coverage

are among the popular code coverage metrics employed by

educators in the current practices of programming

assessments. Also, it is depicted that almost all the identified

structural code coverage metrics contribute as promising test

adequacy criteria to realize APA. However, the promising

results could be generalized if bigger samples are taken into

consideration.

0 0
1 1 1

0 00 0 0 0
1 1 1

2
3

1
2

3
2

1

7
5

8
6 6

8

5
4

2 2
3

2 2

6

0

5

10

Statement

coverage

Path coverage Branch coverage Condition

coverage

Multiple condition

coverage

MCDC Loop coverageN
o

.
o

f
r
e
sp

o
n

d
e
n

t

Strongly Disagree Somewhat Disagree Neither Agree or Disagree Somewhat Agree Strongly Agree

3

1 1
0

3
2

0

5
6 6 6

4

7
5

4
5

4 4
3

2

6

0

2

4

6

8

Statement coverage Path coverage Branch coverage Condition coverage Multiple condition

coverage

MCDC Loop coverage

N
o

.
o

f
r
e
sp

o
n

d
e
m

t

Not critical Low critical Moderately critical High critical

0
1
2
3
4
5

Statement coverage Path coverage Branch coverage Condition coverage Multiple condition

coverage

MCDC Loop coverage

N
o

.
o

f
r
e
sp

o
n

d
e
n

t

0 10 20 30 40 50 60 70 80 90 100

1
0 0

6

0 0

3

1
0

3

8

1
0

2

4

0 0

5

0

2
3

0

2

4

6

8

10

Static analysis Dynamic testing (functional or black box

testing)

Dynamic testing (structural or white box

testing)

N
o

.
o

f
r
e
sp

o
n

d
e
n

t

0 10 20 30 40 50 60 70 80 90 100

Current Practices of Dynamic-Structural Testing in Programming Assessments

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 2 159

ACKNOWLEDGMENTS

The authors acknowledge Ministry Higher Education FRGS

Fund (Code SO: 12821) of Universiti Utara Malaysia for

supporting this work.

REFERENCES

[1] G. Tremblay, and E. Labonte, “Semi-Automatic Marking of Java

Programs using Junit”, Proceeding of International Conference on

Education and Information Systems: Technologies and Applications
(EISTA ’03), Orlando, Florida, 2003, pp. 42-47.

[2] Y. Liang, Q. Liu, J. Xu, and D. Wang, “The Recent Development of

Automated Programming Assessment”, Proceeding of International
Conference on Computational Intelligent and Software Engineering,

Wuhan, China, 2009, pp. 1-5.

[3] D. A. Jackson, “Software System for Grading Student Computer
Programs”, Computers and Education, 27 (3-4), 1996, pp. 171-180.

[4] R. Romli, S. Sulaiman, and K. Z. Zamli, “Designing a Test Set for

Structural Testing in Automatic Programming Assessment”, International
Journal of Advanced Soft Computing and Application, vol. 5, no.3, 2013,

pp. 1- 24.

[5] H. D. Chu, J. E. Dobson and I. C. Liu, FAST: A Framework for
Automating Statistical-based Testing, Software Quality Journal, vol. 6,

no. 1, 1997, pp. 13-36.

[6] R. Romli, S. Sulaiman and K. Z. Zamli., “Current Practices of
Programming Assessment at Higher Learning Institutions”, CCIS 179

(Springer Berlin/Heidelberg). Part 1, pp. 471-485, 2011.

[7] J. Wegener, “Evolutionary Testing Techniques, Stochastic Algorithms:

Foundations and Applications, Lecture Notes in Computer Science”, Vol.

3777/2005, 2005, pp. 82-94.

[8] M. E. Khan, “Different Approaches to White Box Testing Technique for
Finding Errors”, International Journal of Software Engineering and its

Applications, vol. 5, no. 3, 2011, pp. 1-14.

[9] J. Collofello and K. Vehathiri, "An environment for training computer
science students on software testing," Proceedings Frontiers in Education

35th Annual Conference, Indianopolis, IN, 2005, pp. T3E-6

[10] H. Zhu, "Axiomatic assessment of control flow-based software test
adequacy criteria," in Software Engineering Journal, vol. 10, no. 5, pp.

194-204, Sept. 1995

[11] G. I. Latiu, O. A. Cret and L. Vacariu, "Automatic Test Data Generation
for Software Path Testing Using Evolutionary Algorithms," Emerging

Intelligent Data and Web Technologies (EIDWT), 2012 Third

International Conference on, Bucharest, 2012, pp. 1-8.

[12] M. Roper, Software Testing. London, McGraw-Hill Book Company,

1994.

[13] W. E. Perry, Effective Methods for Software Testing, 2nd Edition, John
Wiley & Sons, Inc, USA, 2000.

[14] I. Sommerville, Software Engineering. 7th Edition. Pearson-Addison

Wesley, USA, 2004.
[15] B. Beizer, Software Testing Technique, 2nd Edition. Van Nostrand

Reinhold, New York, 1990.

[16] J. K. Hayhurst, D. S. Veerhusen, J. Chilenski, and L. K. Rierson, “A
Practical Tutorial on Modified Condition/Decision Coverage” NASA STI

Perogram , 2001, pp. 7-9.
[17] U. Sekara, Research Methods for Bussiness: A Skill Building Approach,

4th Edition, John Wiley & Sons, Singapore, 2003.

