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 Abstract—In this paper, we introduce a 

computationally-efficient antenna selection algorithm for the 

pre-coding aided spatial modulation (PSM) that is applicable in 

both the under-determined and over-determined multiple-input 

multiple-output (MIMO) systems. The proposed algorithm is 

based on a modified Gram-Schmidt orthogonalisation, where the 

optimisation function is the sum of scalars that is computed 

successively. The proposed algorithm does not only select 

antennas one-by-one with low computations, but it can also 

remove one or two antennas per iteration, leading to further 

reduction in the computational complexity. Simulation results 

show that the proposed algorithm achieves the optimal diversity 

with tolerable degradation in the bit-error-rate.  

 

 Index Terms—Pre-Coding Aided Spatial Modulation; MIMO; 

Antenna Selection; Gram-Schmidt Orthogonalisation.  

 
I.  INTRODUCTION 

 

Spatial modulation (SM) is a multiple-antenna technique that 

uses both a data symbol selected from a constellation set and 

the index of a transmit antenna chosen from a set of transmit 

antennas to convey information from a transmitter to a receiver 

[1]. In pre-coding aided spatial modulation (PSM), the data 

symbol is pre-coded and the index of a single receive antenna is 

selected from the available set of received antennas [2]. SM and 

PSM were extended to the multiple-receive and -transmit 

antennas cases in [3] and [4], respectively. 

With the emergence of new MIMO systems, where terminals 

and base stations are equipped with a relatively high number of 

antennas (c.f. [5]), antenna selection becomes an attractive 

choice in over-determined and under-determined systems. In 

particular, antenna selection provides gains in the 

signal-to-noise ratio (SNR) and receiver complexity. The 

criterion based on which a subset of the available antennas at 

either the transmitter or the receiver (or both) is chosen depends 

on the transmitter’s and receiver’s structure. Maximising the 

capacity, minimising the symbol error rate or maximising the 

post-processing SNR at the receiver side are frequently 

researched criteria for antenna selection [6].  

In this paper, we propose an antenna subset selection 

algorithm for PSM based on the Gram-Schmidt 

orthogonalisation technique. The proposed algorithm 

sub-optimally maximises the post-processing SNR, while 

achieving huge gains in terms of computational complexity. 

Such gain is contrasted to the optimum selection algorithm and 

a recently proposed fast antenna selection algorithm due to 

Zheng [7], where we achieve more than 90% gain of their 

performance. 

In Section ІІ, the system model is introduced and in Section 

ІІІ, the optimal antenna selection method and the fast receive 

antenna selection is reviewed, and then the QR-based antenna 

selection (QRAS) algorithms is introduced. In Section ІV, the 

computation complexity of the proposed method is analysed 

and reported. Then in Section V, simulation results are 

provided followed by concluding remarks in Section VІ. 

The following notations are used in this paper. The notations 

)(Tr A , H
A , and 1

A are the trace, the Hermitian transpose 

and the inverse of the matrix A, respectively. )(Ai  is the i-th 

singular value of A, ia  is the 𝑖-th column of A, and i
A  is 

the matrix A after removing the i-th column. ),( 2CN  is a 

circularly-symmetric Gaussian random variable with mean and 

variance of   and 2 , respectively. 

 

II.  SYSTEM MODEL AND RELATED WORK 

 

In this paper, we consider a PSM system with nT = 2N 

transmit antennas, for any positive integer N, and nR receive 

antennas. Without the loss of generality, we consider an 

over-determined system, i.e., s.t. nR > nT. Optimally, the goal is 

to select the subset of 𝑛𝑇 receive antennas that maximises the 

post-processing SNR. TR

T

nn
n C


],,[= 1 hhH   is the 

channel matrix whose element hi,j, which couples the i-th 

receive and j-th transmit antenna, is modelled as a 

circularly-symmetric Gaussian random variable with mean and 

variance of zero and one, respectively. The pre-coding matrix 

TR nn

T
n C


],,[= 1 ppP   is based on the zero-forcing 

criterion, which is given as: 

  

,ˆ/= 1
HP Tn  (1) 

 

where Ĥ  is the channel matrix after antenna selection and 

])ˆˆ[(Tr= 1H
HH  is a scaling factor that limits the transmit 

power to 𝑛𝑇 . In this paper, we are concerned with the 

zero-forcing (ZF) criterion (c.f. [8] for further details on the 

post-processing SNR of the ZF and the minimum-mean square 

error (MMSE) criteria). As such, the pre-coded vector is given 

by: 

  



Journal of Telecommunication, Electronic and Computer Engineering 

84 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 8 No. 9   September – December 2016  

,= jispx  
(2) 

 

where the symbol sj is drawn from an M-ary quadrature 

amplitude modulation (M-QAM) set with the power constraint

1=)( *
jj ssE , for Mj ,1,=  . In Equation (2), both i and j 

hold information and the total capacity is therefore equals to 

)(log=)(log 22
MNMnT   bits per channel use. The received 

vector at the Tn  selected receive antennas is given by: 

  

,ˆ= npHy jis  (3) 

 

where ),CN( 2
1 TT nnn σ I0~n  . The data symbol and the receive 

antenna index are recovered using the maximum-likelihood 

estimator as detailed in [2]. 

Before introducing our proposed antenna selection 

algorithm, we first review the literature. The review on the 

optimal antenna subset selection and the greedy subset 

selection (fast RAS) algorithm due to Zheng [7] has been 

conducted.  

 

A. Optimal selection.  

The optimal antenna subset selection algorithm aims to 

maximise the scaling coefficient γ; that is: 

 

 

  ,minarg=

,γminarg=A

H
AA

,P,p=,
p

AA

A
,P,p=,

p
AA

opt
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 (4) 

 

where R

T

n

n
CP =  and 

TT
a

T
aA

Tn
],,[=

1
hhH   with 

}{ 1
T

n,a,aA=  . The optimum antenna subset selection 

employs a brute-force search over the P possible subsets, which 

requires P matrix inversions in total. 

 

B. Greedy selection 

Zheng [7] proposed a greedy subset selection algorithm (fast 

RAS) that is based on Equation (4). In fast RAS, antennas are 

added one by one. This algorithm achieves good performance 

while reducing the computational complexity.  

 

III.  PROPOSED ANTENNA SELECTION ALGORITHM 

 

Let the channel matrix after antenna selection AH  be 

factorised into a unitary matrix Q and an upper-triangular 

matrix R. Accordingly, the scaling factor in Equation (4) can be 

rewritten as Equation (5). 

The equality in Equation (5) is satisfied if and only if HA is 

orthogonal and, as a consequence, R is diagonal. In other 

words, the maximisation of the diagonal elements of the matrix 

R is quasi-equivalent to the maximisation of the singular values 

of HA, which is the goal of the optimum antenna subset 

selection. 
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(5) 

The accuracy of the proposed QRAS algorithm can be 

further analysed in terms of the orthogonality deficiency 

measure frequently used in lattice basis reduction. The 

orthogonality deficiency measure is given by: 
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(6) 

 

where 0))((  AH  with the equality satisfied in case of 

orthogonal HA. Minimising )( AH , hence obtaining a more 

orthogonal HA with minimised scaling factor γ, is equivalent to 

maximising the following:  
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In each iteration, the column with the maximum square 

Euclidean norm, which maximises the diagonal element of the 

matrix R is selected. Thus, the off-diagonal elements of R are 

consequently minimised, resulting in the minimisation of the 

orthogonality deficiency measured in Equation (6), and hence 

improving the scaling factor γ. This analysis is consistent with 

the idea of matrix diagonalisation and block-diagonalisation 

using Jacobi algorithms—c.f. Equation (2.1) in [10] and the 

subsequent discussion. 

Our QRAS algorithm utilising the ideas highlighted above is 

shown in Figure 1, and is described as follows: 

 At each iteration, the antenna corresponding to the column of 

Q with the maximum Euclidean norm is selected.  

 The remaining columns of Q are orthogonalised with respect 

to the selected column (Lines 15-16).  
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 The norms of the remaining columns of Q are updated in 

Line 17. Note that normj is either kept constant, if qi and qj 

are orthogonal, or is reduced, if these columns are not 

orthogonal, which is the more probable case.  

 In case of large nR, at each iteration, the m columns with the 

least norms are excluded in order to reduce the complexity. 

This is motivated by the fact that the smallest norms vanish 

as the matrix dimension increases, which is the same 

behaviour of the minimum singular values since 

n
H

n nIGG =lim   (see also Theorem 5.1 in [9]).  

 This process is repeated (nT-1) times because the 

orthogonalisation part of the proposed algorithm is not 

required in the nT-th iteration. 

 

Input: 
Rn0R , 

T
HQ  ,  RnS ,1,2, , Tn , Rn , m  

1:  for 1=i  to Rn  do 

2:     in o r m = 
2

iq  

3:  end for 

4:  for 1=i  to Tn  do 

5:    )(m a xa r g
1)(,,=

j
imnij R

k norm





 

6:    Exchange columns i  and ik  in S 

7:    if Tni =  then 

8:      Tn
A = S1  

9:      break 

10:    end if 

11:    Exchange columns i  and ik  in Q, R and norm 

12:    iiiR q,  

13:    iiii R ,qq   

14:    for 1= ij  to 1)(  imnR  do 

15:      j
H
ijiR qq ,  

16:      ii , jjj R qqq   

17:      
2
, jijj R n o r mn o r m  

18:    end for 

19:    for 1=k  to m  do 

20:      )(m i na r g
,1,=

j
nij

i

R

k norm


  

21:      ik
QQ =  

22:      ik
RR =  

23:      ik
n o r mn o r m=  

24:    end for 

25:  end for 

26:  Tn
A=S1  

Output: A 

 
Figure 1: Pseudo-code of the proposed QR decomposition-based antenna 

selection algorithm (QRAS) 
 

We can clearly see that under-determined systems (nT >nR) 

are treated similarly: H is assigned to Q and necessary changes 

in qras are performed. 

Figure 2 depicts the flowchart of the proposed algorithm. 

Note that the orthogonalisation of the i-th column of the matrix 

Q is followed by the computation of the i-th row of the matrix 

R in an iterative fashion as depicted in the flowchart. 

 
 

Calculates normi =  qi 
2 , i = 1, ... ,nR

<INPUTS>

R=0nR, Q=H
T, S=[1,2, ... ,nR], 

nT, nR, m

<OUTPUT>

A

Find k: the index of max(norm)

i = 1

Exchange columns i and k in S

i = nT ?

Exchange columns i and k in Q, R and norm

NO

Orthogonailze the columns of Q from i+1 to nR-m(i-1) 

with column i

Remove m antennas with the least Euclidean norms

i = i + 1

A = S(1:nT)

Compute i-th row of R

Normalize qi

YES

 
 

Figure 2: Flowchart of the proposed QR decomposition-based antenna 

selection algorithm (QRAS) 

   

IV. COMPUTATIONAL COMPLEXITY 

 

In this section, we analyse the computational complexity of 

QRAS. In this analysis, we consider that a complex 

multiplication requires four real multiplications and two real 

additions, while a complex addition requires two real additions. 

Fast RAS. The complexity of the fast RAS is computed using 

Equation (11) and (12) in [7].  
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Table 1 

Computational Complexity of the Proposed QRAS for m = 0 versus those of the Fast RAS and the Optimal Search Algorithm for Several Scenarios.

 

A. Optimal selection 

Due to the special structure of the matrix in Equation (4), the 

computation of  H
AAHH  requires TT nn 46 2   real 

multiplications and 276 2  TT nn  real additions. The matrix 

inversion requires 23 62 TT nn   real multiplications and 

23
TT nn   real additions as it is performed using the Cholesky 

decomposition due to the Hermitian structure of the matrix 

 H
AAHH . The total computational complexity of the optimal 

search algorithm is given by the following:  

 

),412(2= 23
TTT

n

n
RM
opt nnnCN R

T
  

2),75(= 23  TTT
n

n
RA
opt nnnCN R

T
 

 

with the superscripts RM  and RA  standing for real 

multiplication and real addition, respectively. 

 

B. QRAS Algorithm 

The computational complexity of the proposed QRAS 

algorithm is given by: 

  

 

2),511(4

1227448=
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Table 1 lists the computational complexities of the proposed 

QRAS, the fast RAS, and the optimal search algorithms for 

several (nT, nR) scenarios. In Table 1, 
qras
fast  and 

qras
opt  are the 

saving factors achieved by the proposed QRAS algorithm with 

respect to the fast RAS and the optimal search algorithm, 

respectively. For nT = 8 and nR = 12, the proposed QRAS 

algorithm with 0=m , i.e., at each iteration a single antenna is 

chosen and none is removed, performs only about 11% and 

0.55% of the computations required by the fast RAS and the 

optimal search algorithm, respectively. Furthermore, the 

computational complexity of the proposed algorithm for 1=m  

is reduced by 102 real multiplications and 69 real additions 

when nT = 4 and 1386 real multiplications and 987 real 

additions when nT = 8. This reduction is doubled when m = 2. 

 

 

 
 

Figure 3: BER performances of the QRAS algorithm for 0=m , the fast RAS 

algorithm, and the optimal search algorithm for nT = 4 and nR = 6, 8, and 10. 

 

 
 

Figure 4: BER performances of the QRAS algorithm for 0=m , the fast RAS 

algorithm, and the optimal search algorithm for nT = 8 and nR = 12 and 16. 

 

),( RT nn  
Optimal 

),( RA
opt

RM
opt NN  

Fast RAS 

),( RA
fast

RM
fast NN  

QRAS 

),( RA
qras

RM
qras NN  

%qras
opt  %qras

fast  

(4, 6) (4560, 1770) (2164, 1586) (507, 339) (92.566, 80.848) (76.571, 68.033) 

(4, 8) (21280, 8260) (3396, 2490) (727, 491) (94.693, 94.056) (78.593, 70.803) 

(4, 16) (553280, 214760) (8324, 6106) (1607, 1099) (99.801, 99.488) (80.694, 73.682) 

(8, 12) (871200, 385110) (8324, 6106) (4119, 2917) (99.665, 99.243) (90.180, 87.571) 

(8, 16) (22651200, 10012860) (67928, 53716) (6031, 4293) (99.981, 99.957) (91.122, 88.772) 

(8, 20) (221707200, 98004660) (93912, 74292) (7943, 5669) (99.997, 99.994) (91.542, 89.308) 
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V. SIMULATION RESULTS 

 

In this Section, we assume that the transmitter has perfect 

knowledge of the channel state information (CSI) and that it 

employs quadrature phase shift keying (QPSK) modulation. 

The receiver has a scaling factor γ, necessary for the 

maximum-likelihood receiver, but not CSI. 

Figure 3 and Figure 4 depict the performance of the proposed 

QRAS algorithm for m = 0, the fast RAS algorithm, and the 

optimal search algorithm for nT = 4 and nT = 8, respectively, and 

for several values of nR. Both the QRAS and the fast RAS 

algorithms achieve a quasi-optimal diversity order, as 

manifested by the parallel BER curves of these algorithms to 

that of the optimal selection algorithm, with a tolerable 

degradation in the bit-error rate (BER), given the huge 

reduction in the computational complexity that our proposed 

algorithm achievements. From Figure 3, we can conclude that 

the proposed algorithm lags the performance of the fast 

algorithm by 0.2, 0.35, and 0.35dB at a target BER of 10-4 for nT 

= 4 and nR = 6, 8, and 10, respectively. The degradation is less 

than 0.5dB in case of nT = 8 and nR = 12 and 16, as shown in 

Figure 4. 

 
 

Figure 5: BER performances of the proposed QRAS algorithm for m = 0, 1 
and 2, nT = 4, and nR = 8, 12 and 16. 

 

 
 

Figure 6: BER performances of the proposed QRAS algorithm for for m = 0, 1 
and 2, nT = 8, and nR = 16, 24 and 32. 

Figure 5 and Figure 6 depict the BER of the proposed 

algorithm for m = 0, referred to as qras, m = 1, referred to as 

qras1, and m = 2, referred to as qras2 for nT = 4 and nT = 8, 

respectively, and for several values of nR. Based on Figure 1, 

qras1 can be applied iff nR ≥ 2nT and qras2 can be applied iff nR ≥ 

3nT. As nR increases beyond this limit, the BER performances 

of qras1 and qras2 converge to that of qras. The number of 

excluded antennas per iteration, m, is selected as a trade-off 

between the computational complexity and BER performance. 

In this paper, we analysed the performance for m = 0, 1, 2, but 

more than 2 antennas can be removed per iteration as long as nT 

antenna selection iterations are still possible, which means that 

nR should be greater than or equal to (m+1) nT. This applies to 

the case of massive MIMO systems, where a relatively small 

set of antennas is selected from a large set of available 

antennas. In order to reduce the computational complexity, 

more than 2 antennas can be removed at each iteration, leading 

to a tremendous reduction in the complexity of the proposed 

algorithm. The only drawback of the proposed algorithm is that 

its performance is slightly degraded as compared to the 

algorithm proposed in [7], while achieving considerable 

reduction in the computational complexity. 

 

VI. CONCLUSION 

 

In this paper, we proposed an efficient antenna selection 

algorithm based on the Gram-Schmidt orthogonalisation 

method. Instead of performing several matrix inversions, as in 

the optimal and the fast RAS algorithms, our algorithm 

successively minimises the optimisation function, which is a 

sum of scalars. In each iteration, and in addition to selecting 

one antenna, the proposed QRAS algorithm can also remove 

one or two antennas, leading to further reduction in the 

computational complexity. For instance, when nT = 8 and nR = 

16, the proposed algorithm requires only a few hundredths and 

10% of the computational complexities of the optimal search 

method and the fast RAS algorithm, respectively. 
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