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Abstract—Small robots can be beneficial in many applications 

as they have the advantage of reaching small spaces. For these 

robots to be truly autonomous, ability to map their surrounding 

is essential. Accuracy of mapping is related closely to sensor’s 

precision. However, small robots can only be equipped with small 

sensor that is typically has noisy characteristic with cheaper cost, 

such as sonar sensor and infrared sensor. To enhance the quality 

of map build by noisy and low-cost sensor, machine learning 

algorithm integration is a good approach. In this work, multiple 

learners, which are Naïve Bayes, Decision Tree, Neural Network 

and AdaBoost, were experimented with occupancy grid map 

algorithm using Khepera III robot platform. Then, the results of 

their fitness score according to the maps build were compared. 

The results show that Neural Network performed the best with 

the occupancy grid map algorithm.  

 

Index Terms—Indoor Mapping; Khepera III; Machine 

Learning; Occupancy Grid Map. 

 

I. INTRODUCTION 

 

One of the essential challenges in robotics is to reduce robot’s 

size as well as its cost. Small robots have the advantage of 

reaching and exploring narrow places to perform any specific 

task. Small or miniature robots have variety of applications in 

domestic, industrial or humanitarian field. This includes 

inspection system, medical, cleaning, mowing, de-mining and 

even in search and rescue (SAR) efforts to name a few.  

One possible area is inspection of aircrafts’ turbines that are 

highly exposed to tear-and-wear condition. A cost effective 

inspection system can be done by using miniature robots [2]. 

These robots have to be very small to fit in the aircraft’s 

turbine to inspect the blades inside.  

In domestic cleaning, robotic vacuum cleaners have gained 

significant accomplishment. Although these robots are not 

miniature, they are considerably small. It is reported more than 

2 million units of domestic service robots are sold every year 

from 2012 and approximately 95% of the sold units are 

robotic vacuum cleaners [3]. Vacuum cleaner robots have 

become more intelligent with the ability to memorise the area 

that it has explored. This allows the robot to clean more 

efficiently.       

A riskier application of mini robots is their involvement in 

search and rescue mission. A very unfortunate event of 

tsunami in Tohoku region in Japan had claimed many lives. In 

the event of locating survivor in closed space, such as 

collapsed building, underground passages and tunnels, where 

rescuers cannot get closer to the rubbles due to various 

reasons, mini robots would be an obvious alternative to do the 

job. In response to the Tohaku disaster, two types of robots on 

ground and air were designed to track victims in SAR mission, 

particularly in underground malls [4].  

A majority of researches in the area of mini robot 

applications focus on the design and the development of the 

robot such as, the method of locomotion, sensing and 

communication. Thus, works that discuss mini robots and their 

capability to execute autonomous behaviour such as 

localisation, navigation, mapping and path planning are often 

based on either commercialised mini robots or custom-made 

for education and research.  

For a robot to be truly autonomous, it needs to be aware of 

its environment. To acquire this information, robot essentially 

has to know where it is in the environment and how the 

environment looks like. Concisely, there are three main tasks 

for a robot to learn efficiently about its environment, which 

are mapping, localisation and path planning [5].  

In this research work, we focus on mapping the problems of 

small robot. Our approach, adopting machine-learning method 

is described to obtain map using a ring of infrared sensor on a 

small mobile robot platform.  

Section II describes previous works in mapping problem 

using small robot with low-cost sensor. Section III describes 

the simulation setup of this research, such as the robot 

platform and range model used for robot’s perception. Section 

IV elaborates the utilised of mapping algorithm, including the 

machine learning method adopted for comparison. The results 

and discussion are included at the end of this section. Lastly, 

Section V concludes this paper and suggests future 

development.  

 

II. PREVIOUS WORKS 

 

A. Mapping with small robot   

Mapping the environment using small robot has been done 

previously by multiple researchers [6]–[9]. In these works, 

two types of map representation were used; line segment map 

[6] and occupancy grid map [7]–[9] representation.  

Grid-based map representation is a metric map, where the 
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map of environment is divided into grid cells. The occupancy 

value of each cell depends on the measured distance, where 

the cells at the end of the sensors’ rays are considered 

occupied (i.e. mark as black cells) and the cells in between are 

considered free (i.e. mark as white cells).  While, line segment 

map uses algorithm, such as Hough-transform [6], [10], [11], 

Region of Constant Depth (RCD) [12], and iterative end point 

fit [13] are needed to extract line features from the sensors’ 

measurements. 

Feature-based map and occupancy grid map have their 

advantages and disadvantages. Feature based-map is a more 

compact map representation, but it needs to make certain 

assumption on the environment. For example, some of the 

works made orthogonality or geometric assumption of the 

environment[11], [13]. On the other hand, occupancy grid map 

is more flexible but with high memory consumption. Table 1 

summarises the advantage and disadvantages of feature-based 

map and grid map. 

 
Table 1  

Comparison of feature-based map and occupancy grid map algorithm 

 

Feature Based Map Occupancy Grid Map 

+ Compact map representation - 

Memory consumption 

increases with  resolution of 

grid cells 

- 

Make assumption on 

structure of features in 

environment 

+ 
Make no assumption on 
features of the environment 

- 
Need data association to   
landmarks  

+ 
No data association to 
landmarks needed 

 

In this research, we adapted occupancy grid map 

representation, due to its flexibility of making no assumption 

on the feature of the environment. Thus, the mapping 

algorithm can be used in the application, such as inspection, 

where actual condition of the environment is required for 

evaluation.  

 

B. Machine Learning Integration 

Small robots have limitation on the size of sensors that can 

be equipped onboard. For high-end sensor, such as laser 

rangefinder, using occupancy grid map algorithm alone can 

produce a good quality map. However, laser rangefinders are 

bulky and not suitable for small robots.  

Among sensors that are small in size are sonar sensors and 

infrared sensor. These sensors are much lower in cost, but 

have significant noise in their sensors’ measurements.  

Implementation of low-cost sensor could not be treated the 

same way like the high-end sensor implementation in grid-

based mapping. The sensor measurements need to be pre-

processed to gain a better map accuracy. For example, sonar 

sensors’ reflections can be misinterpreted due to many 

reasons.  

Machine learning method is advantageous for interpreting 

noisy sensor measurements. Neural network learner was used 

in [1] to evaluate multiple adjacent sonar sensors. In [14], 

neural network was also used with infrared rangefinder to 

produce a more accurate map.  

Other than Neural Network, there are many algorithms 

developed in machine learning domain. Machine learning has 

evolved greatly in the past decade. With cheaper Graphical 

Processing Unit (GPU) that is available in the market, high 

computation cost of machine learning methods are still 

manageable.  

In order to interpret noisy sensor measurements to produce 

an occupancy grid map, one way is to train a learner to 

classify sensors data into a grid cell’s occupancy[1]. This 

problem can be treated as classification method.  

However, instead of using the classification value (i.e. 0 for 

free cell and 1 for occupied cell), the probability of the output 

is used. The probability value is then fed into the occupancy 

grid map algorithm.  

In this work, there are multiple algorithms that were 

experimented to learn the sensor inputs. They are Naïve 

Bayes, Decision Tree, AdaBoost (for adaptive boosting) and 

Neural Network learners. 

 

III. SIMULATION SETUP 

 

A. Robot Platform 

In this research, we used Webots robot simulator, which is a 

simulator developed by Swiss Federal Institute of Technology, 

Lausanne (EPFL). We selected Khepera III mobile robot from 

the many robot prototypes provided (see Figure 1). Khepera 

III is a differential drive robot produced by K-Team 

Corporation. Khepera III satisfies the criteria of being small 

with the size of approximately 12 cm diameter and it is 

equipped with two types of low-cost sensor. They are five 

ultrasonic sensors and nine infrared sensors. In this research 

work, we used the array of infrared sensor because infrared 

sensor has smaller beam characteristic compared to sound 

wave by ultrasonic sensor. The array of infrared sensors is not 

equally apart due to the physical build of the robot.  

Figure 2 shows the infrared sensors arrangement and its 

numbering order in Webots robot simulator. There is a newer 

version of the robot, Khepera-IV. However, this robot bears a 

higher cost.  

 

 
 

Figure 1: Khepera III mobile robot in Webots robot simulator 
 

B. Range Model for infrared sensor 

In occupancy grid map algorithm, the quality of map is 

highly related to the sensor’s characteristic. Thus, it is 

important to analyse the characteristic of the sensor. 

The measurement of infrared sensor in Webots simulator 

depends on the reflectance on colour properties of the object’s 

surface. The infrared sensor equipped on Khepera III is a 

TCRT5000 reflective optical sensor from Vishay Telefunken. 

It has a maximum range of 30 cm.  

To analyse the characteristic of the sensor, we changed the 
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location of a white plate in front of the sensor mounted on the 

mobile robot. Measurements were taken at every 1 cm away 

from the sensor, for distances of 0 to 30 cm.  

 

 
 

Figure 2: Infrared sensors arrangement for Khepera III robot. The numbering 
of sensors is as documented in Webots simulator. 

 

For each distance, 10,000 measurements were collected. 

The sensor measurements at distance of 2 cm were plotted on 

a histogram in Figure 3. It can be seen that the noise of the 

sensor’s measurements is set to follow Gaussian distribution 

in Webots simulator. This shows that the simulator uses a 

fairly realistic infrared noise model.  

 

 
Figure 3: Histogram fit of 5500 measurements at a distance of 2cm. 

 

After the initial calibration, a range model implementation 

was adapted from the work by Proroks et al. [15]. For each set 

of measurements with distance in range 𝑅 = {0,1, … ,30cm}, 

mean, 𝜇𝑖 and standard deviation, 𝜎𝑖, where 𝑖 ∈ {𝑅}, were 

determined.  

In order to elaborate the sensor values, an ensemble 𝛺 are 

build from sensor values obtained at 𝑅. The ensemble 𝛺 is 

defined as Equation (1). We denote 𝑣𝑖 and 𝑑𝑖 as the 

measurements value and actual distance at each 𝑅. Then, the 

ensemble 𝛺 were created by sampling 𝑆 samples from a 

normal distribution, 𝒩(𝜇𝑖 , 𝜎𝑖), which reflect the distribution 

of the infrared sensor. Each sample is denoted by 𝑣𝑗. 

 

𝛺 = ⋃{(𝑣𝑗 , 𝑑𝑖)|𝑣𝑗~𝒩(𝜇𝑖 , 𝜎𝑖), 𝑗 ∈ [0 ⋯ 𝑆]}

𝑖∈𝑅

 (1) 

 

In order to obtain the information with respect to sensor 

values’ axis, 𝑣, (i.e. 𝜇(𝑣) and 𝜎(v)) a rectangular function, ∏, 
(see Equation (2)) was applied to the set of points in 𝛺. 

 

∏(𝑡) = {
0 if |𝑡| >

1

2

1 if |𝑡| <
1

2

 (2) 

 

We defined a set of values for 𝑣 ∈ {0, 50, ⋯ , 4000}, and 

selected 𝑁 points for each 𝑣 from 𝛺 using a sliding window, 

𝑤 = 40 as in Equation (3).  

 

𝑁 = ∑ ∏ (
𝑣𝑗 − 𝑣

𝑤
)

(𝑣𝑗,𝑑𝑖)∈𝛺

 
(3) 

 

These selected points were used to calculate the mean, 𝜇(𝑣), 

and standard deviation, 𝜎(𝑣), of each 𝑣 value. Equation (4) 

and (5) are used for this purpose. 

 

𝜇(𝑣) = ∑
𝑑𝑖 ⋅ ∏ (

𝑣𝑗 − 𝑣
𝑤

)

𝑁
(𝑣𝑗,𝑑𝑖)∈𝛺

 (4) 

𝜎(𝑣) = √
1

𝑁
∑ (𝑑𝑖 − 𝜇(𝑣))

2
⋅  ∏ (

𝑣𝑗 − 𝑣

𝑤
)

(𝑣𝑗,𝑑𝑖)∈𝛺

 (5) 

 

Figure 4 shows the result of infrared sensor range model 

from the method described. A polynomial fit is performed on 

the mean values and obtained 𝑅2 = 0.9888. It is noted that an 

exponential decay fit can also be used to obtain the range 

model.  

 

 

 
 

Figure 4: Estimated range model for infrared sensor obtained from 

raw values in grey points. The standard deviations are marked by 

error bars. 
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IV. METHODOLOGY 

 

A. Machine learning integration  

From the sensor characteristic of infrared sensor, it can be 

seen that the range model is highly non-linear due its noisy 

sensor characteristic.  

Using the machine learning method is advantageous. We 

interpreted multiple sensors reading concurrently, rather than 

interpreting the range measurement of infrared sensor 

independently. By doing this, it allows to capture more 

information for sparse sensor, such as an array of infrared 

sensors [1], [16].  

To use the machine learning method, we need a training 

data to train the learner. For this, we use a simple squared 

environment with multiple objects and let the robot run 

randomly while collecting the data of the sensor and the 

corresponding occupancy cell values. Figure 5 shows the 

occupancy grid map of our training environment.  

 

 
 

Figure 5: Occupancy grid map for the training purpose. Black cells are 

occupied area and white cells are free area. 

 

The machine learning algorithm determines the decision 

surface that separates a class with another class so that a new 

data input can be classified accordingly. Thus, a machine 

learner takes data and transforms it into a decision surface. 

Firstly, we wanted to visualise the data to see whether there is 

a good chance that the data could be classified into 0 and 1.  

For this, we determined the input of our classifier based on a 

method in [1]. The author used neural network to determine 

the probability of cell occupancy with the following inputs:  

 Four sensors measurements, �̃�𝑡
𝑘, 𝑘 ∈ {1,2,3,4} that are 

the closest to a particular cell at 𝑥 and 𝑦 position. 

 Encoded position of cell using the distance, 𝑑𝑥,𝑦 and 

angle, 𝜃𝑥,𝑦, of cell to the closest sensor with respect to 

the robot position 

In order to visualise the data, we reduced the dimensionality 

of the input. Regression method was used, where the four 

closest sensor inputs a feed to a regression to obtain four 

coefficients (i.e. 𝛼1, 𝛼2, 𝛼3, and 𝛼4) leading to a single value, 

𝑧𝑡. 𝑧𝑡 was computed using (6), where 𝑐 is a constant value.  

 

𝑧𝑡 = 𝑐 + ∑ 𝛼𝑖�̃�𝑡
𝑖

4

𝑖

 (6) 

 

The training data was visualised in three dimensional with 

sensor regression output, 𝑧𝑡, 𝑑𝑥,𝑦, and 𝜃𝑥,𝑦 as showed in 

Figure 6. In Figure 6, the red circles are cells with value 1 and 

blue circles are cells with value 0. By observation, it can be 

seen that there is a decision boundary that can be obtained 

where the upper area are cells with value 1 and the bottom 

area is occupied by cells with value 0. However, in the middle 

area, there are overlapping data between the two classes. 

 
Figure 6: Train data visualization in 3 dimensional view, the red circles are 

cells with value 1 and blue circles are cells with value 0 

 

We then treated this problem as classification problem with 

machine learning. As mentioned before, the supervised 

learning methods that were experimented were Naïve Bayes, 

Decision Tree, AdaBoost and Neural Network. The inputs are 

𝑧𝑡, 𝑑𝑥,𝑦, and 𝜃𝑥,𝑦 and output is the probability of cell’s 

occupancy. Figure 7 shows the input and output structure for 

Neural Network configuration. The probability of cell 

occupancy is denoted as 𝑝(𝑚𝑖|𝑥𝑡 , 𝑧𝑡), which describes the 

probability of cell 𝑚𝑖 is occupied given the robot’s current 

position, 𝑥𝑡 and latest sensor measurements, 𝑧𝑡. Here, 𝑚𝑖 is 

the 𝑖th cell in map, 𝑚. Function 𝑓(⋅) is the regression function 

in (6). 

 
Figure 7: Neural network input output configuration. Here, f(⋅) is the 

regression function in Equation (6). 

 

B. Occupancy grid map 

Occupancy grid map algorithm was first developed by 

Moravec and Elfes in the 80's [17]. The algorithm is derived 

from the static state binary Bayes filter. Here, the probability 

form was converted to log odds notation stated in Equation (7) 

for computation efficiency. Note that, the probability 

𝑝(𝑚𝑖|𝑥𝑡 , 𝑧𝑡) obtained from the machine learning algorithm 
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was used as the probability value.  

 

𝑙(𝑥) = log (
𝑝(𝑥)

1 − 𝑝(𝑥)
) (7) 

 

By using this substitution, the log odd notation form of each 

cell in the grid map was computed using Equation 8. 

𝑙(𝑚𝑖|𝑧1:𝑡 , 𝑥1:𝑡) denotes the log odd value of 𝑚𝑖 given all 

robot’s observation, 𝑧1:𝑡 and all robot’s state 𝑥1:𝑡. The last 

term in Equation 8 is the initial value of the cell, 𝑚𝑖. The 

initial probability is set to 0.5. To get the occupancy 

probability, the log odd value, 𝑙(𝑚𝑖|𝑧1:𝑡 , 𝑥1:𝑡) is then 

converted back to probability using equation 9, which is the 

inverse of Equation 7. 

 

𝑙(𝑚𝑖|𝑧1:𝑡 , 𝑥1:𝑡) = 𝑙(𝑚𝑖|𝑧𝑡 , 𝑥𝑡) + 𝑙(𝑚𝑖|𝑧1:𝑡−1, 𝑥1:𝑡−1)
− 𝑙(𝑚𝑖) 

(8) 

𝑝(𝑥) = 1 − (
1

1 + 𝑒𝑙(𝑥)
) (9) 

 

V. SIMULATION 

 

A. Results 

After implementing the method described in the previous 

section on Khepera III mobile robot, the robot was set to run 

through environment in Figure 8. This unstructured 

environment is inspired by Magnenat et al. work [8]. The 

environment contains multiple unsymmetrical objects and 

corners with various angles.  

It is logical that the larger the environment relative to the 

robot’s perception range, the more challenging for it to acquire 

a map. Thus, to get maximum observation due to the short 

range of infrared sensor, the robot has to do multiple loops in 

the test environment.    

 

 
 

Figure 8: Test indoor environment with Khepera III mobile robot. 

 

Figure 9 (b)-(e) shows the resulting map obtained with 

Naïve Bayes, Decision Tree, AdaBoost and Neural Network 

learners respectively. To compare the performance of each 

learner that integrates with the occupancy grid map algorithm 

described in previous subsection, a fitness function in equation 

10 is used. Grid cells’ values of the ground truth grid map, 

𝑀truth, are compared with grid cells of the map obtained using 

machine learning method, 𝑀. The sum of difference is divided 

by the number of cells compared, 𝑁cells. This value is deducted 

from 1 to obtain the fitness score. A perfect match will result 

in a score of 1, while a complete wrong map will result in a 

score of 0.  

 

𝑓(𝑀, 𝑀truth) = 1 −
∑ |𝑀(𝑐) − 𝑀truth(𝑐)|𝑐∈cells

𝑁cells

 (10) 

 

Table 2 shows the result of each learner. The first column 

shows Mean Squared Error (MSE) of each learner in the 

training phase. To calculate the MSE, we separated our 

collected data into train and test portion. The next column 

shows the fitness scores that each learner obtained. There are 

two fitness scores; 1) for all free cells and occupied cells in 

sensors’ range, 2) for only occupied cells in sensors’ range. 

The last column is the average computation time of each 

learner. 

 

B. Discussion 

From Table 2 fitness score, it can be observed that the 

difference is not apparent on the fitness score of all detected 

cells. However, the maps obtained in Figure 9(b)-(e) show that 

Neural Network has far more accuracy than the other three 

learners.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Figure 9: Resulting occupancy grid maps of different machine learning 

algorithm using 2.5cm2 grid cells. (a) without any machine learning 

algorithm, only occupancy grid map algorithm. (b) Naïve Bayes learner, (c) 
Decision Tree learner (d) Adaboost learner (e) Neural Network learner 
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Table 2 

Performance of Machine Learning Algorithm 
 

Method 
Mean Squared 

Error (MSE) 

𝑓(𝑀, 𝑀truth) Time step 

(second) all occupied 

Naïve 

Bayes 
0.1504 0.7822 0.2879 1.23 

Decision 
Tree 

0.1227 0.7577 0.1776 1.13 

Neural 

Network 
0.1269 0.8641 0.7410 1.43 

AdaBoost 0.1169 0.7814 0.2695 2.59 

 

This can be seen quantitatively from the fitness score of 

only occupied cells, where the score of Neural Network is the 

highest among the learners and followed by Naïve Bayes and 

AdaBoost which had about 30% accuracy. Meanwhile, 

Decision Tree had the lowest performance among the learners. 

Another observation was that only Neural Network learner can 

detect the rock formation on the right area of the environment. 

However, objects on the left compartment were still vague.  

We analysed the training data using the Neural Network 

classifier.  

Figure 10 shows the training data that are classified using 

Neural Network. The data points with marker × and o of the 

same colour (i.e. red or blue) showed data points that are 

classified correctly. While, the data points that have both red 

and blue markers are data points that are not classified 

correctly. It can be observed that some of the data with label 1 

are interpreted as 0 on the red area. Neural Network is 

naturally probabilistic, which explains why it has better 

performance compared to the other learners.  

 

 
Figure 10: Classification using Neural Network. Circles and x marks with the 

same color (i.e. red or blue) shows data that is interpreted correctly by Neural 
Network. While circle and x marks that are not the same color show data that 

is misclassified by Neural Network 

 

VI. CONCLUSION AND FUTURE WORKS 

 

Although the training of neural network learner could not 

manage to get a lower MSE value (i.e. MSE < 0.01), by 

integrating this learner with occupancy grid map, we managed 

to get an adequate map. Compared to the map without any 

learner (see Figure 9(a)), machine learning is a good approach 

as a probabilistic classifier. The drawback of the learner is the 

consumption of significant time due to computation cost. 

Table 2 shows that all the learners took more than 1 second for 

a time step. This is due to the computation of each learner on 

each cell in the grid. Smaller grid size will result in more cells 

to be computed, hence more execution time of the machine 

learner. However, further optimisation can be done in order to 

produce a more accurate and faster learner for mapping with 

infrared sensor.  
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