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Abstract—Traditionally, the lack of confidence in the system 

life cycle is expressed using the concept of risk. Nowadays, 

software development projects face various risks. However, the 

estimation and classification of risk, increased estimation of 

accuracy and reduced of uncertainty ultimately improve 

project outcomes. Therefore, in this paper, a Support Vector 

Machine (SVM) is used to model risk classification in software 

development projects. The proposed algorithm is compared 

with other methods in the literature such as Self Organizing 

Map (SOM) and K-Means based on measures of Classification 

Accuracy Rate (CAR) and Area Under Curve (AUC). 

According to the results, the proposed method exhibits 

superior CAR and AUC. 

 

Index Terms—Classification; Risk; Software; Support 

Vector Machine; Area under Curve. 

 

I. INTRODUCTION 

 

All software projects are associated with risk. The concept 

of risk has been defined in various ways. For example, in [1] 

risk is introduced as a traditional way of expressing the lack 

of reliability in the system life cycle. Also, events that occur 

during a software project and threaten its success are known 

as risk [2]. It is inherented in all the projects and cannot be 

completely eliminated; nevertheless, it is possible to reduce 

its effects through effective management. Risk refers to the 

exposure to economic or financial loss, physical injury or 

damage or delay, resulting from uncertainty associated with 

a particular current of a job.  

Generally, software project risks are divided into two 

groups: general and specific. While the former may happen 

in all software projects, the latter varies with the type of 

project. It is extremely difficult to identify such risks, 

particularly in estimating their probability of occurrence; 

and predicting their impact. Several factors contribute to this 

difficulties, such as project size, complexity, structure, 

content, long-term planning and volatile changes. Therefore, 

risk management results in reducing disaster, duplication, 

concentration, and balancing the required effort; 

furthermore, it leads to simulation of win-win conditions 

[3].  

Software development projects are often challenged by a 

variety of risks. The most important factors that could lead 

to project failure include low efficiency, time pressure, poor 

quality and high cost [4]. Effective risk management is a 

complex task that requires a good evaluation of the 

underlying factors. Due to the complexity of risk factors and 

the interconnected nature of uncertainties associated with 

future resources, risk cannot be expressed with 

mathematical precision during the early phases of the life 

cycle [5]. Risk management of software projects plays an 

important role in achieving the desired result. Activities 

carried out in software projects are inherently high risk, and 

this results in varying degrees of functionality. Managing 

software risk has many benefits, including increased 

reliability, more accurate estimations, and preventing 

unnecessary effort [6]. As a result of the risk assessment, 

accuracy is increased while reducing the uncertainty 

associated with the project. Moreover, since team members 

are aware of the risk control measures, it is possible to avoid 

duplication and wasted effort [4]. 

Management of software projects comprises four phases: 

identification, evaluation, planning and controlling. 

According to Bohm, an estimation of risk is obtained by 

multiplying the probability of risk occurrence by its effect. 

Qualitative analysis of risk and its impact are dependent on 

analyst experience as well as statistical data [7]. 

Risk in the application depends on several small and large 

factors; thus, they need to be classified according to some 

criteria. One such classifications in the field of software 

risks is proposed by Wallace. Various reasons can be cited 

for the application of this classification including its use of 

up-to-date information and the fact that it reflects a 

consensus among the members of PMI. Also, in order to 

prove the competence and credibility of the framework, the 

SEM method is used [8]. This framework is composed of six 

dimensions and each dimension corresponding to risks are 

discussed. In Table 1, different aspects of this classification 

and the associated risks are mentioned. 

Given the importance of the classification of risk in 

software development projects and the factors presented in 

Table 1, in this paper, we provide a method based on a 

Support Vector Machine (SVM) to classify risks involved in 

software development projects. 

 

II. RELATED WORKS 

 

In [9], key risks obtained from a group of information 

technology project managers in Hong Kong were 

introduced. In their study, a number of new risks were 

identified from the perspective of the seller. According to 

the authors, project managers believed that operations 

performed in foreign countries are associated with greater 

risk than those carried out domestically.  
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Table 1 

Wallace classification of software risk factors [8] 
 

Risk Dimensions Risk of Software 

User 

Members resistance to changes 
Conflict between users 

Users with negative attitudes towards the project 

Users who are not committed to the project 
Lack of cooperation between Member 

Requirements 

Constant changes in system requirements 

System requirements are not fully diagnosed 
No clearly stated system requirements 

Anachronistic system requirements 

Complexity of the project 

The use of new technology 

High-level technical complexity 

Immaturity of technology 
Using technologies that have not been used in previous projects 

Planning and Control 

Absence of project management methodology that is effective and efficient 
Lack of sufficient monitoring in project progress 

Incomplete estimate of the resources required 

Poor project planning  
Project milestones are not defined in a transparent manner 

The project manager is not experienced enough 

Ineffective communication 

Team 

Insufficient experience with similar projects  

Team members are not trained enough 

Lack of specialized skills by team members 

Organizational environment 

Organizational management changes during the project 
Negative impact of trade policies on the project 

Instability in the organizational environment 

Organizational restructuring during the project 

 

Furthermore, [10] focused on the experiences of IT 

project manager. Their reports unveiled more risk and 

controls that allow us to control the occurrence of risks in 

the future because of the different factors, which are well 

explained. Later, in [11], the same authors used the model to 

improve the quality of information technology projects in 

organizations. In their study, a novel chi-square test was 

used to control risks in software projects [12]. 

In [3], the authors utilized regression testing and effect 

size testing to improve their previous work on reducing the 

risk of software development projects. Moreover, in [4], 

they proposed new risk management method in their 

software projects by using stepwise regression. This study 

was performed by using regression analysis in order to 

control the comparison of each risk factor so that the effect 

of each factor in the implementation phase could be 

determined. 

The authors in [13] concluded that risk management 

encompasses process, methodology and specific tools to 

assess and reduce risk factors associated with the 

development software life cycle.  

In [14], risk management is argued to provide a solution 

to the standardization of risk assessment and mitigation in 

software development. In [15], by using the Delphi method, 

software development risks were extracted with the help of 

experts. In this study, a total of 53 risks were classified into 

14 groups.   

In [16], risk management was shown to consist of five 

phases: risk identification (planning, identifying and 

prioritizing), analyzing and assessing risk (risk analysis, risk 

assessment), risk management, risk control, communication, 

and documentation. In [17], a model based on fuzzy logic 

was proposed for evaluating the risk in software 

development projects. The proposed model was created 

using the five criteria, planning, complexity, requirements; 

furthermore, three membership functions were considered 

for input to the proposed fuzzy system. In total, 243 rules 

were designed. The proposed method was shown to have 

lower estimation error compared to previous methods in the 

literature. 

Some researchers in [18] employed neural network (NN) 

and support vector machine (SVM) approaches to establish 

a model for risk evaluation in project development. In the 

model, the input is a vector of software risk factors that were 

obtained through interview with 30 experts, and the output 

is the final outcome of the project. The experiment shows 

the model is valid. Interestingly. In their study, the standard 

neural network model had lower prediction accuracy 

compared to SVM due to its tendency in finding local 

optima. 

Yong et al. in [19] identified the key software risk factors 

responsible in achieving successful outcome and used a 

neural network approach to establish a model for 

minimizing the risks attributed to failed projects. In order to 

enhance model performance, principal component analysis 

and genetic algorithm were employed. The experimental 

result indicates that the software risk analysis can be 

improved through these methods and that the risk analysis 

model is effective. 

 

III.  SUPPORT VECTOR MACHINE 

 

A Support Vector Machine is principally a linear machine 

whose main idea is to create a hyperplane as a level of 

decision-making, so that the separation between the positive 

and the negative samples is maximized. By using a method 

based on statistical learning theory, the technique achieves 

this optimization. More precisely, SVM is an 

implementation of approximation of the "structural risk 

minimization". The structure of the SVM training algorithm 

is based on a core of inner multiplication between a support 

vector such as xi, and the vector x derived from the input 

space. The smallest subset of training data extracted by the 

algorithm is known as the Support Vector. Depending on 



Classification of Risk in Software Development Projects using Support Vector Machine 

 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 9 No. 1 3 

how the multiplication core of the inner is formed, different 

training machines with non-linear decision-making planes 

may be obtained [20-22]. 

 Consider training sample 1{( , )}N

i i ix d  , where xi is an 

input algorithm for the sample n and di is the corresponding 

final output, which is different from the input. We assume 

that classes displayed with a subset of 1id    

and 1id    are linearly separated. A plane of decision-

making equation such as the above plane is as follows: 

 

0Tw x b   (1) 

  

where x denotes an input vector, w represents an adjustable 

weight vector and b is a bias. The above equation can be 

written as follows: 

 

0 1

0 1

T

i i

T

i i

w x b for d

w x b for d

   

   
 

(2) 

 

For a given weight vector w and a bias b, the distance 

between the above plane defined in Equation (1) and the 

closest data point is called the resolution, represented by p. 

The objective of SVM is to find unique plane such that the 

resolution p is maximized. In this situation, the decision 

level is considered as the optimal hyperplane. Figure 1 

shows the geometry structure of the optimal hyperplane for 

a two-dimensional input space.  

 

 
 

Figure 1: A schematic representation of an optimal hyperplane for 
linearly separable patterns [19]. 

 

Now suppose 
ow and 

ob are the optimal weight vector 

and bias, respectively. Therefore, the optimal hyperplane is 

defined as follows: 

 

0T

o ow x b   (3) 

 

The main concern in finding the parameters 
ow and 

ob for 

the optimal hyperplane with a set the training 

is {( , )}i ix d  . Then, the pair ( , )o ox d must satisfy the 

following conditions: 

 

1 1

1 1

T

o i o i

T

o i o i

w x b for d

w x b for d

   

    
 (4) 

 

Data points ( , )i ix d , which satisfy the condition of 

equality for both formulas (4) are called Support Vector and 

hence they are called SVM. These vectors play a prominent 

role in the performance of this type of training machines. 

Conceptually, backup vectors are data points located near 

the plane of making decisions, and therefore they are 

difficult to classify. In order to obtain the optimal 

hyperplane, once the Lagrange multipliers are applied and 

the necessary calculations are performed, the following is 

performed:  

Given the training sample 1{( , )}N

i i ix d  , find the Lagrange 

coefficients 1{ }N

i i  such that the following objective 

function is maximized: 

 

1 1 1

1
( )

2

N N N
T

i i j i j i j

i i j

Q a a a d d x x
  

     (5) 

 

Subject to: 

 

1

0
N

i i

i

a d


  (6) 

0 1,2,...,i C for i N     (7) 

 

where C is a positive parameter identified by the user. 

 

IV. METHODOLOGY 

 

As mentioned earlier, risk management during the 

software development life cycle is associated with a large 

number of benefits, because it enables increased confidence, 

more accurate estimate, and prevention of unnecessary 

efforts for project development. Therefore, considering the 

importance of addressing the issue of risk in software 

development projects and relying on the classification by 

Wallace, we set out to propose a method based on SVM for 

classification of the risks involved in software development 

projects.  

An SVM is a statistical classification model, which 

initially maps non-linear data in a high-dimensional space 

through several kernels and then tries to find the hyperplane 

that separates data with the maximum margin from this 

hyperplane. In its general form, SVM is used for two 

classes; thus, it is sufficient for this purpose. A critical 

feature of SVM is data classification, which is performed by 

minimizing data error of test sets. In contrast, in other 

classifiers such as neural networks performance is based on 

minimizing the error of data of training sets. Thus, in SVM, 

there is no concern for being stuck in local minima. In an 

attempt to enhance classification accuracy in the proposed 

method and allow SVM input data to be focused on a 

specific area, the input data needs to be normalized before 

the procedure continues. Data normalization is applied to 

data points that are not in the same domain so that the values 

fall in the same range.  
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Also in the dataset, the desired output is divided into 

either high risk and low risk in two categories. Subsequent 

to the classification, for the sake of simplicity in the 

proposed method, “high-risk” is replaced with the value 1 

and “low-risk” is replaced with the value -1. Accordingly, 

for a given sample, if the SVM generates an output of 1, the 

risk is assumed to be high, whereas an output value of -1 

represents a low risk.   

Also, to work with SVM, the data should be divided into 

two parts to be used for training and test purposes. In this 

paper, 70 percent of the data were used for training the SVM 

while the remaining were used for testing. It should be noted 

that, all input data for both training and testing were 

normalized according to the explained procedure prior to 

being used. 

 

V. RESULTS AND FINDINGS 

 

In this section, the results of the application of SVM-

based methods are discussed, and the results are compared 

with those of the SOM and K-Means algorithms. As stated 

earlier, for classified operations, the dataset was obtained 

from software development projects. This data set includes 

530 samples 70 percent of which the data was used for 

training, and 30 percent for testing.  

In the proposed method for SVM, the parameter C was 

considered equal to 100 and according to the data, a linear 

function was used as the kernel of the network. The linear 

function is shown in Equation (8).  

 

( , ) .T

i j i jK x x x x  (8) 

 

The knowledge produced in the learning stage of the 

model must be analyzed in the evaluation stage in order to 

determine its value, as well as the efficiency of the learning 

algorithm. These measures can be calculated for both the 

training data set in the learning phase and the test data set in 

the test phase. Also a condition for success in the data 

mining is the ability to interpret the obtained knowledge. 

One of the important criteria used to determine the 

effectiveness of a classifier is the CAR. In fact, this criterion 

is the most popular criterion of standard algorithms and 

public classification that shows the percentage of total 

records correctly classifier by the classifier. Using equation 

(9), the CAR is obtained [23]. Values of TP and TN are the 

most important values that should be maximized for two 

categories. In the proposed method, the value of CAR is 

equal to 99.5084, and in the SOM method, it is equal to 

98.2467 and in method of K- Means it is equal to 97.4618. 

 

TN TP
CAR

TN FN TP FP




  
 (9) 

 

In addition to the standard CAR, another important 

criteria used to determine the performance of classification 

criteria is the AUC. It represents the area under the Receiver 

Operating Characteristic (ROC) curve; larger values of the 

ROC are indicative of greater classifier marginal efficiency. 

UAC is calculated through Equation (10) [24]: 

 

  

1

2

TPR FPR
AUC

 
  (10) 

 

where 
TP

TPR
TP FN




 and 
FP

FPR
FP TN




. TP and TN 

are the number of data points that have been correctly 

classified as positive and negative, respectively. On the 

other hand, FP and FN are the number of data points that has 

been falsely classified as positive and negative, respectively.  

A ROC curve allows a visual comparison of a set of 

classifiers; also numerous points in the ROC space are 

significant. The lower left point (0, 0) indicates the strategy 

that will be generated in a positive classification. The 

opposite strategy, produced without condition of positive 

classification, is determined with top right point (1, 1). Point 

(0, 1) shows perfect grouping. More generally, considering 

the two points in the ROC space, one is deemed better than 

the other if more space is located closer to the northwest 

corner. Also, it should be noted that the ROC curves show a 

classifier behavior regardless of the distribution of 

categories or cost of an error; therefore, classification 

performance is separated from these factors [25]. Only when 

a classifier in the performance space clearly dominates the 

other categories, it can be claimed to be superior. For this 

reason, the area under ROC curve showing the AUC 

criterion can play a decisive role in introducing categories of 

supremacy clause. In Figure 2 the ROC curve, AUC value 

for the proposed approach, and methods of SOM and K-

Means are shown. 

Unlike other criteria for determining the efficiency 

classifier, AUC criterion is independent of decision-making 

threshold of classifier. Therefore, this measure is indicative 

of the reliability of the output of a classification specified 

for different data sets that this concept is not comparable by 

any other performance measures that derived the category. 

As shown in Figure 2, the AUC is equal to 0.9802 in the 

proposed method, whereas it is equal to 0.9732 and 0.9643 

for SOM and K-Means, respectively. Overall, the results 

regarding AUC and CAR show that the proposed method 

outperforms other methods of risk classification in software 

development projects. 

 

VI. CONCLUSION 

 

In this paper, after highlighting the importance of the 

classification of risk in software development projects and 

the factors affecting it, an SVM-based method was proposed 

for risk classification in software development projects. 

Then, the classification accuracy of the proposed method 

was compared with that of SOM and K-Means based on the 

CAR and AUC. After examination, the CAR and AUC of 

the proposed method were equal to 99.5084 and 0.9802, 

respectively. The same values were 98.2467 and 0.9732 for 

SOM and 97.4618 and 0.9643 for K-Means. As things stand, 

the CAR and AUC in proposed procedure are higher than 

the corresponding values in SOM and K-Means. The results 

show that the proposed method for risk classification in 

software development projects, exhibits better precision and 

performance. 
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Figure 2: ROC curve AUC value of the proposed method as well as that of other methods 
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