

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 1 1

Classification of Risk in Software Development

Projects using Support Vector Machine

M.Zavvar1, A.Yavari2, S.M. Mirhassannia1, M.R.Nehi1, A.Yanpi1 and M.H.Zavvar1
1Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran.

2Mazandaran University of Science and Technology.

Zavvar.developer@gmail.com

Abstract—Traditionally, the lack of confidence in the system

life cycle is expressed using the concept of risk. Nowadays,

software development projects face various risks. However, the

estimation and classification of risk, increased estimation of

accuracy and reduced of uncertainty ultimately improve

project outcomes. Therefore, in this paper, a Support Vector

Machine (SVM) is used to model risk classification in software

development projects. The proposed algorithm is compared

with other methods in the literature such as Self Organizing

Map (SOM) and K-Means based on measures of Classification

Accuracy Rate (CAR) and Area Under Curve (AUC).

According to the results, the proposed method exhibits

superior CAR and AUC.

Index Terms—Classification; Risk; Software; Support

Vector Machine; Area under Curve.

I. INTRODUCTION

All software projects are associated with risk. The concept

of risk has been defined in various ways. For example, in [1]

risk is introduced as a traditional way of expressing the lack

of reliability in the system life cycle. Also, events that occur

during a software project and threaten its success are known

as risk [2]. It is inherented in all the projects and cannot be

completely eliminated; nevertheless, it is possible to reduce

its effects through effective management. Risk refers to the

exposure to economic or financial loss, physical injury or

damage or delay, resulting from uncertainty associated with

a particular current of a job.

Generally, software project risks are divided into two

groups: general and specific. While the former may happen

in all software projects, the latter varies with the type of

project. It is extremely difficult to identify such risks,

particularly in estimating their probability of occurrence;

and predicting their impact. Several factors contribute to this

difficulties, such as project size, complexity, structure,

content, long-term planning and volatile changes. Therefore,

risk management results in reducing disaster, duplication,

concentration, and balancing the required effort;

furthermore, it leads to simulation of win-win conditions

[3].

Software development projects are often challenged by a

variety of risks. The most important factors that could lead

to project failure include low efficiency, time pressure, poor

quality and high cost [4]. Effective risk management is a

complex task that requires a good evaluation of the

underlying factors. Due to the complexity of risk factors and

the interconnected nature of uncertainties associated with

future resources, risk cannot be expressed with

mathematical precision during the early phases of the life

cycle [5]. Risk management of software projects plays an

important role in achieving the desired result. Activities

carried out in software projects are inherently high risk, and

this results in varying degrees of functionality. Managing

software risk has many benefits, including increased

reliability, more accurate estimations, and preventing

unnecessary effort [6]. As a result of the risk assessment,

accuracy is increased while reducing the uncertainty

associated with the project. Moreover, since team members

are aware of the risk control measures, it is possible to avoid

duplication and wasted effort [4].

Management of software projects comprises four phases:

identification, evaluation, planning and controlling.

According to Bohm, an estimation of risk is obtained by

multiplying the probability of risk occurrence by its effect.

Qualitative analysis of risk and its impact are dependent on

analyst experience as well as statistical data [7].

Risk in the application depends on several small and large

factors; thus, they need to be classified according to some

criteria. One such classifications in the field of software

risks is proposed by Wallace. Various reasons can be cited

for the application of this classification including its use of

up-to-date information and the fact that it reflects a

consensus among the members of PMI. Also, in order to

prove the competence and credibility of the framework, the

SEM method is used [8]. This framework is composed of six

dimensions and each dimension corresponding to risks are

discussed. In Table 1, different aspects of this classification

and the associated risks are mentioned.

Given the importance of the classification of risk in

software development projects and the factors presented in

Table 1, in this paper, we provide a method based on a

Support Vector Machine (SVM) to classify risks involved in

software development projects.

II. RELATED WORKS

In [9], key risks obtained from a group of information

technology project managers in Hong Kong were

introduced. In their study, a number of new risks were

identified from the perspective of the seller. According to

the authors, project managers believed that operations

performed in foreign countries are associated with greater

risk than those carried out domestically.

Journal of Telecommunication, Electronic and Computer Engineering

2 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 1

Table 1

Wallace classification of software risk factors [8]

Risk Dimensions Risk of Software

User

Members resistance to changes
Conflict between users

Users with negative attitudes towards the project

Users who are not committed to the project
Lack of cooperation between Member

Requirements

Constant changes in system requirements

System requirements are not fully diagnosed
No clearly stated system requirements

Anachronistic system requirements

Complexity of the project

The use of new technology

High-level technical complexity

Immaturity of technology
Using technologies that have not been used in previous projects

Planning and Control

Absence of project management methodology that is effective and efficient
Lack of sufficient monitoring in project progress

Incomplete estimate of the resources required

Poor project planning
Project milestones are not defined in a transparent manner

The project manager is not experienced enough

Ineffective communication

Team

Insufficient experience with similar projects

Team members are not trained enough

Lack of specialized skills by team members

Organizational environment

Organizational management changes during the project
Negative impact of trade policies on the project

Instability in the organizational environment

Organizational restructuring during the project

Furthermore, [10] focused on the experiences of IT

project manager. Their reports unveiled more risk and

controls that allow us to control the occurrence of risks in

the future because of the different factors, which are well

explained. Later, in [11], the same authors used the model to

improve the quality of information technology projects in

organizations. In their study, a novel chi-square test was

used to control risks in software projects [12].

In [3], the authors utilized regression testing and effect

size testing to improve their previous work on reducing the

risk of software development projects. Moreover, in [4],

they proposed new risk management method in their

software projects by using stepwise regression. This study

was performed by using regression analysis in order to

control the comparison of each risk factor so that the effect

of each factor in the implementation phase could be

determined.

The authors in [13] concluded that risk management

encompasses process, methodology and specific tools to

assess and reduce risk factors associated with the

development software life cycle.

In [14], risk management is argued to provide a solution

to the standardization of risk assessment and mitigation in

software development. In [15], by using the Delphi method,

software development risks were extracted with the help of

experts. In this study, a total of 53 risks were classified into

14 groups.

In [16], risk management was shown to consist of five

phases: risk identification (planning, identifying and

prioritizing), analyzing and assessing risk (risk analysis, risk

assessment), risk management, risk control, communication,

and documentation. In [17], a model based on fuzzy logic

was proposed for evaluating the risk in software

development projects. The proposed model was created

using the five criteria, planning, complexity, requirements;

furthermore, three membership functions were considered

for input to the proposed fuzzy system. In total, 243 rules

were designed. The proposed method was shown to have

lower estimation error compared to previous methods in the

literature.

Some researchers in [18] employed neural network (NN)

and support vector machine (SVM) approaches to establish

a model for risk evaluation in project development. In the

model, the input is a vector of software risk factors that were

obtained through interview with 30 experts, and the output

is the final outcome of the project. The experiment shows

the model is valid. Interestingly. In their study, the standard

neural network model had lower prediction accuracy

compared to SVM due to its tendency in finding local

optima.

Yong et al. in [19] identified the key software risk factors

responsible in achieving successful outcome and used a

neural network approach to establish a model for

minimizing the risks attributed to failed projects. In order to

enhance model performance, principal component analysis

and genetic algorithm were employed. The experimental

result indicates that the software risk analysis can be

improved through these methods and that the risk analysis

model is effective.

III. SUPPORT VECTOR MACHINE

A Support Vector Machine is principally a linear machine

whose main idea is to create a hyperplane as a level of

decision-making, so that the separation between the positive

and the negative samples is maximized. By using a method

based on statistical learning theory, the technique achieves

this optimization. More precisely, SVM is an

implementation of approximation of the "structural risk

minimization". The structure of the SVM training algorithm

is based on a core of inner multiplication between a support

vector such as xi, and the vector x derived from the input

space. The smallest subset of training data extracted by the

algorithm is known as the Support Vector. Depending on

Classification of Risk in Software Development Projects using Support Vector Machine

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 1 3

how the multiplication core of the inner is formed, different

training machines with non-linear decision-making planes

may be obtained [20-22].

 Consider training sample 1{(,)}N

i i ix d  , where xi is an

input algorithm for the sample n and di is the corresponding

final output, which is different from the input. We assume

that classes displayed with a subset of 1id  

and 1id   are linearly separated. A plane of decision-

making equation such as the above plane is as follows:

0Tw x b  (1)

where x denotes an input vector, w represents an adjustable

weight vector and b is a bias. The above equation can be

written as follows:

0 1

0 1

T

i i

T

i i

w x b for d

w x b for d

   

   

(2)

For a given weight vector w and a bias b, the distance

between the above plane defined in Equation (1) and the

closest data point is called the resolution, represented by p.

The objective of SVM is to find unique plane such that the

resolution p is maximized. In this situation, the decision

level is considered as the optimal hyperplane. Figure 1

shows the geometry structure of the optimal hyperplane for

a two-dimensional input space.

Figure 1: A schematic representation of an optimal hyperplane for
linearly separable patterns [19].

Now suppose
ow and

ob are the optimal weight vector

and bias, respectively. Therefore, the optimal hyperplane is

defined as follows:

0T

o ow x b  (3)

The main concern in finding the parameters
ow and

ob for

the optimal hyperplane with a set the training

is {(,)}i ix d  . Then, the pair (,)o ox d must satisfy the

following conditions:

1 1

1 1

T

o i o i

T

o i o i

w x b for d

w x b for d

   

    
 (4)

Data points (,)i ix d , which satisfy the condition of

equality for both formulas (4) are called Support Vector and

hence they are called SVM. These vectors play a prominent

role in the performance of this type of training machines.

Conceptually, backup vectors are data points located near

the plane of making decisions, and therefore they are

difficult to classify. In order to obtain the optimal

hyperplane, once the Lagrange multipliers are applied and

the necessary calculations are performed, the following is

performed:

Given the training sample 1{(,)}N

i i ix d  , find the Lagrange

coefficients 1{ }N

i i such that the following objective

function is maximized:

1 1 1

1
()

2

N N N
T

i i j i j i j

i i j

Q a a a d d x x
  

    (5)

Subject to:

1

0
N

i i

i

a d


 (6)

0 1,2,...,i C for i N    (7)

where C is a positive parameter identified by the user.

IV. METHODOLOGY

As mentioned earlier, risk management during the

software development life cycle is associated with a large

number of benefits, because it enables increased confidence,

more accurate estimate, and prevention of unnecessary

efforts for project development. Therefore, considering the

importance of addressing the issue of risk in software

development projects and relying on the classification by

Wallace, we set out to propose a method based on SVM for

classification of the risks involved in software development

projects.

An SVM is a statistical classification model, which

initially maps non-linear data in a high-dimensional space

through several kernels and then tries to find the hyperplane

that separates data with the maximum margin from this

hyperplane. In its general form, SVM is used for two

classes; thus, it is sufficient for this purpose. A critical

feature of SVM is data classification, which is performed by

minimizing data error of test sets. In contrast, in other

classifiers such as neural networks performance is based on

minimizing the error of data of training sets. Thus, in SVM,

there is no concern for being stuck in local minima. In an

attempt to enhance classification accuracy in the proposed

method and allow SVM input data to be focused on a

specific area, the input data needs to be normalized before

the procedure continues. Data normalization is applied to

data points that are not in the same domain so that the values

fall in the same range.

Journal of Telecommunication, Electronic and Computer Engineering

4 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 1

Also in the dataset, the desired output is divided into

either high risk and low risk in two categories. Subsequent

to the classification, for the sake of simplicity in the

proposed method, “high-risk” is replaced with the value 1

and “low-risk” is replaced with the value -1. Accordingly,

for a given sample, if the SVM generates an output of 1, the

risk is assumed to be high, whereas an output value of -1

represents a low risk.

Also, to work with SVM, the data should be divided into

two parts to be used for training and test purposes. In this

paper, 70 percent of the data were used for training the SVM

while the remaining were used for testing. It should be noted

that, all input data for both training and testing were

normalized according to the explained procedure prior to

being used.

V. RESULTS AND FINDINGS

In this section, the results of the application of SVM-

based methods are discussed, and the results are compared

with those of the SOM and K-Means algorithms. As stated

earlier, for classified operations, the dataset was obtained

from software development projects. This data set includes

530 samples 70 percent of which the data was used for

training, and 30 percent for testing.

In the proposed method for SVM, the parameter C was

considered equal to 100 and according to the data, a linear

function was used as the kernel of the network. The linear

function is shown in Equation (8).

(,) .T

i j i jK x x x x (8)

The knowledge produced in the learning stage of the

model must be analyzed in the evaluation stage in order to

determine its value, as well as the efficiency of the learning

algorithm. These measures can be calculated for both the

training data set in the learning phase and the test data set in

the test phase. Also a condition for success in the data

mining is the ability to interpret the obtained knowledge.

One of the important criteria used to determine the

effectiveness of a classifier is the CAR. In fact, this criterion

is the most popular criterion of standard algorithms and

public classification that shows the percentage of total

records correctly classifier by the classifier. Using equation

(9), the CAR is obtained [23]. Values of TP and TN are the

most important values that should be maximized for two

categories. In the proposed method, the value of CAR is

equal to 99.5084, and in the SOM method, it is equal to

98.2467 and in method of K- Means it is equal to 97.4618.

TN TP
CAR

TN FN TP FP




  
 (9)

In addition to the standard CAR, another important

criteria used to determine the performance of classification

criteria is the AUC. It represents the area under the Receiver

Operating Characteristic (ROC) curve; larger values of the

ROC are indicative of greater classifier marginal efficiency.

UAC is calculated through Equation (10) [24]:

1

2

TPR FPR
AUC

 
 (10)

where
TP

TPR
TP FN




 and
FP

FPR
FP TN




. TP and TN

are the number of data points that have been correctly

classified as positive and negative, respectively. On the

other hand, FP and FN are the number of data points that has

been falsely classified as positive and negative, respectively.

A ROC curve allows a visual comparison of a set of

classifiers; also numerous points in the ROC space are

significant. The lower left point (0, 0) indicates the strategy

that will be generated in a positive classification. The

opposite strategy, produced without condition of positive

classification, is determined with top right point (1, 1). Point

(0, 1) shows perfect grouping. More generally, considering

the two points in the ROC space, one is deemed better than

the other if more space is located closer to the northwest

corner. Also, it should be noted that the ROC curves show a

classifier behavior regardless of the distribution of

categories or cost of an error; therefore, classification

performance is separated from these factors [25]. Only when

a classifier in the performance space clearly dominates the

other categories, it can be claimed to be superior. For this

reason, the area under ROC curve showing the AUC

criterion can play a decisive role in introducing categories of

supremacy clause. In Figure 2 the ROC curve, AUC value

for the proposed approach, and methods of SOM and K-

Means are shown.

Unlike other criteria for determining the efficiency

classifier, AUC criterion is independent of decision-making

threshold of classifier. Therefore, this measure is indicative

of the reliability of the output of a classification specified

for different data sets that this concept is not comparable by

any other performance measures that derived the category.

As shown in Figure 2, the AUC is equal to 0.9802 in the

proposed method, whereas it is equal to 0.9732 and 0.9643

for SOM and K-Means, respectively. Overall, the results

regarding AUC and CAR show that the proposed method

outperforms other methods of risk classification in software

development projects.

VI. CONCLUSION

In this paper, after highlighting the importance of the

classification of risk in software development projects and

the factors affecting it, an SVM-based method was proposed

for risk classification in software development projects.

Then, the classification accuracy of the proposed method

was compared with that of SOM and K-Means based on the

CAR and AUC. After examination, the CAR and AUC of

the proposed method were equal to 99.5084 and 0.9802,

respectively. The same values were 98.2467 and 0.9732 for

SOM and 97.4618 and 0.9643 for K-Means. As things stand,

the CAR and AUC in proposed procedure are higher than

the corresponding values in SOM and K-Means. The results

show that the proposed method for risk classification in

software development projects, exhibits better precision and

performance.

Classification of Risk in Software Development Projects using Support Vector Machine

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 1 5

Figure 2: ROC curve AUC value of the proposed method as well as that of other methods

REFERENCES

[1] S. Cole, X. Giné, J. Tobacman, R. Townsend, P. Topalova and J.

Vickery, "Barriers to household risk management: evidence from
India", American economic journal. Applied economics, Vol.5, no.1,

2013. pp.104–135.

[2] P.L. "Bannerman, Risk and risk management in software projects: A
reassessment", Journal of Systems and Software, Vol.81, no.12,

2008, p. 2118-2133.
[3] V. T. Covello, L. B. Lave, A. A. Moghissi and V. R. R Uppuluri,

"Uncertainty in risk assessment, risk management, and decision

making". Springer Science & Business Media, Vol. 4. 2013.
[4] M.K. Sadgrove, "The complete guide to business risk management".

Ashgate Publishing, Ltd, 2015.

[5] P. Bolton, H. Chen and N. Wang, "Market timing, investment, and
risk management". Journal of Financial Economics, Vol.109, no.1,

2013, pp. 40-62.

[6] J. Bessis and B. O'Kelly, "Risk management in banking", John Wiley
& Sons, 2015.

[7] J. Lam, "Enterprise risk management: from incentives to controls",

John Wiley & Sons, 2014.
[8] S.-J. Huang and W.-M. Han, "Exploring the relationship between

software project duration and risk exposure: A cluster analysis".

Information & Management, Vol.45, no.3, 2008, pp. 175-182.
[9] I. Rus, H. Neu and J. Münch, "A systematic methodology for

developing discrete event simulation models of software

development processes". In Proceedings of the 4th International
Workshop on Software Process Simulation and Modeling, 2014.

[10] D. Ince and D. Andrews, "The Software life cycle", Butterworth-

Heinemann, 2014.
[11] S. Islam, H. Mouratidis and E.R. Weippl, "An empirical study on the

implementation and evaluation of a goal-driven software

development risk management model". Information and Software
Technology, Vol.56, no.2, 2014, pp. 117-133.

[12] P. Hopkin, "Fundamentals of risk management: understanding,

evaluating and implementing effective risk management", Kogan
Page Publishers, 2014.

[13] A. Dumont, P. Fournier, M. Abrahamowicz, M. Traoré, S. Haddad,

W.D. Fraser and QUARITE research group, "Quality of care, risk
management, and technology in obstetrics to reduce hospital-based

maternal mortality in Senegal and Mali (QUARITE): a cluster-

randomised trial". The Lancet, Vol.382, no.9887, 2013. pp. 146-157.

[14] D.R. Van Deventer, K. Imai and M. Mesler, "Advanced financial
risk management: tools and techniques for integrated credit risk and

interest rate risk management", John Wiley & Sons, 2013.

[15] P. Chawan, J. Patil and R. Naik, "Software risk management".
International Journal of Computer Science and Mobile Computing,

Vol.2, no.5, 2013, pp. 60-66.

[16] R. Conforti, M. La Rosa, A.H. Ter Hofstede, G. Fortino, M. de
Leoni, W.M. van der Aalst and M.J. Adams, "A software framework

for risk-aware business process management". in Proceedings of the
CAiSE'13 Forum at the 25th International Conference on Advanced

Information Systems Engineering (CAiSE): CEUR Workshop

Proceedings, Vol.998. 2013.
[17] A.S. Khatavakhotan and S.H. Ow, "Development of a Software Risk

Management Model using Unique Features of a Proposed Audit

Component". Malaysian Journal of Computer Science, Vol.28, no.2,
2015.

[18] Y. Hu, J. Huang, J. Chen, M. Liu and K. Xie, " Software Project

Risk Management Modeling with Neural Network and Support
Vector Machine Approaches". in Third International Conference on

Natural Computation, 2007.

[19] H. Yong, C. Juhua, R. Zhenbang, M. Liu, and X. Kang, " A Neural
Networks Approach for Software Risk Analysis". in Sixth IEEE

International Conference on Data Mining Workshops, 2006.

[20] V.N. Vapnick, "The Nature of Statistical Learning Theory", Second
Edition, Springer-Verlag New York Inc, 2000.

[21] S. Haykin, "Neural Networks: A Comprehensive Foundation. Second

Edition", Prentice-Hall Inc, 1999.
[22] C.J. Burges, "A tutorial on support vector machines for pattern

recognition". Data mining and knowledge discovery, Vol.2, no.2,

1998, pp. 121-167.
[23] S.-W. Lin and S.-C. Chen, "PSOLDA: A particle swarm

optimization approach for enhancing classification accuracy rate of

linear discriminant analysis", Applied Soft Computing, Vol.9, no.3,
2009, pp. 1008-1015.

[24] J. Davis and M. Goadrich. "The relationship between Precision-

Recall and ROC curves". in Proceedings of the 23rd international
conference on Machine learning. 2006.

[25] T. Fawcett, "An introduction to ROC analysis", Pattern recognition

letters, Vol.27, no.8, 2006, pp. 861-874.

