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Abstract—Crying is the only way of communication for infants 

to express their physical and emotional needs. Automatic infant 

cry analysis that provides fast and non-invasive process is 

suitable to assess the physical and emotional states of infants. The 

cry analysis provides an opportunity to understand infants’ 

needs. It is also beneficial in clinical environment for identifying 

specific pathologies through infant cry. This paper presents an 

automatic infant cry classification system for a multiclass 

problem. The cry classification system consists of three stages: (1) 

feature extraction, (2) feature selection, and (3) pattern 

classification. We extracted spectral features, such as Mel 

Frequency Cepstral Coefficients (MFCC) and Linear Prediction 

Cepstral Coefficients (LPCC) to represent the acoustic 

characteristics of the cry signals. In addition, the combination of 

spectral and dynamic features was also investigated. Due to the 

high dimensionality of data resulting from the feature extraction 

stage, we selected relevant features to perform feature selection 

to reduce the data dimensionality. In this stage, five different 

feature selection techniques were experimented. In the pattern 

classification stage, two Artificial Neural Network (ANN) 

architectures: Multilayer Perceptron (MLP) and Radial Basis 

Function Network (RBFN) were used for classifying the cry 

signals into five categories: asphyxia, pain, hunger, deaf, and 

normal. Experimental results show that the best classification 

accuracy of 93.43% (Kappa value of 0.91) was obtained from 

MFCC + ∆MFCC + ∆∆MFCC feature set, when using CFS 

selection technique and RBFN. 

 

Index Terms—Artificial Neural Network; Dynamic Features; 

Feature Selection; Infant Cry Classification. 

 

I. INTRODUCTION 

 

Crying is a type of communication for infants to express their 

physical and emotional condition. There are many reasons for 

infant to cry such as sadness, hunger, lonely, anger, and 

discomfort. Furthermore, vital information, such as the health 

status of the infant can be obtained from the cry itself. Thus, 

many researches have been conducted to analyze the 

characteristics of infant cry that give signals to different types 

of cries and pathologies. These researches allow for the 

understanding of various needs of the infants so that suitable 

treatment can be given, thus, helping to prevent any further 

complications of the infants.  

Early researches have employed auditory and sound 

spectrographic analysis to analyse the signals of infant cry. 

Several types of cries and pathologies have been detected from 

the infant cry signals using the conventional analyses, such as 

hunger, pain, pleasure, asphyxia, hydrocephalus, brain 

damage, encephalitis, hypothyroidism, down syndrome, 

oropharyngeal abnormalities, and genetic defects [1], [2]. 

However, these analyses require subjective evaluation from 

clinical specialists and consume time when performing the 

evaluation process. Moreover, they are unsuitable for a large 

database. Hence, automatic infant cry classification system has 

been proposed to overcome the limitations of the conventional 

analyses. The classification system provides fast and accurate 

diagnosis results. It is also suitable for large cry database and 

harmless to infants. This analysis has been applied widely and 

obtained promising results in the classification of different 

types of cries and pathologies, such as hunger and pain cries 

[3]–[5], asphyxia [6]–[8], deaf [9]–[11], autism [12], and cleft 

palate [13]. 

 

II. LITERATURE REVIEW 

 

Significant progress has been achieved in the development 

of the automatic infant cry classification system. Lederman et 

al. [13] classified cries of infants with cleft palate using Mel 

Frequency Cepstral Coefficients (MFCC) and Linear 

Prediction Cepstral Coefficients (LPCC) features and Hidden 

Markov Model (HMM) as classifier. They obtained an average 

accuracy of 91% in the classification of two categories of 

cries: cleft palate with plate and without plate. In [14], Orlandi 

et al. applied Random Forest classifier to identify cries from 

pre-term and full-term infants with the accuracy up to 87%. In 

[15], an optimal wavelet feature was used with Artificial 

Neural Network (ANN) to determine the normal and 

pathological infant cries. The highest classification accuracy 

achieved was more than 99%. In [16], MFCC feature and feed 

forward neural network were used in automatic classification 

of normal and deaf cry with 97.43% classification accuracy. In 

[9], a General Regression Neural Network (GRNN) was 

implemented for infant cry classification with two class 

problems: normal cry and deaf cry. Short-time Fourier 

transform (STFT) analysis was used to extract the features, 

and a method was proposed. This has resulted in a maximum 

correct classification of 99%. Furthermore, in [17], Multilayer 

Perceptron (MLP) trained with scaled conjugate gradient was 

applied to classify the normal and deaf cry with 93.2% 

classification accuracy. In [18], several features such as 

LPCC, MFCC, and Bark Frequency Cepstral Coefficients 

(BFCC) were applied to classify three types of infant cries 

with an accuracy up to 80%. Moreover, in [19], an embedded 
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infant cry classification system using Support Vector Machine 

(SVM) was proposed to identify four types of cries with the 

classification rate around 56%. Hariharan et al. [20] proposed 

an automatic infant cry classification with three classes: 

normal, deaf, and asphyxia. Weighted Linear Prediction 

Cepstral Coefficients (WLPCC) and PNN were applied to 

classify the cry signals with above 98% classification 

accuracy. Saraswathy et al. [6] successfully developed an  

automatic infant cry classification using PNN and GRNN. The 

cry signals were classified into three categories: asphyxia, deaf 

and normal cry with the highest classification accuracy above 

99%. Finally, in [21], three categories of cries were 

considered: pain, wet diaper, and hunger. Gaussian mixture 

models (GMM) were used as a classifier in the cry 

classification systems developed with 78.96% overall 

classification accuracy. 

These studies proved that the infant cry consists of specific 

patterns that enable the classification of different types of 

pathologies and cries using automated techniques. However, 

from the literature reviewed, while two-class classification, 

also known as binary classification have been widely studied 

[9], [11], [13]–[17], [22]–[25], only a small number of studies 

focuses on multiclass classification [6], [18]–[21]. Therefore, 

in this paper, we propose an automatic infant cry classification 

system for a multiclass problem. We studied different features, 

selection techniques, and classifiers to determine which of 

these techniques best performs in the classification system. 

Five different categories of cries namely, asphyxia, pain, 

hunger, deaf, and normal were identified. 10-fold cross 

validation was used to evaluate the effectiveness of the 

features applied and the reliability of the classification results. 

The experimental results showed that the classification system 

achieved the highest classification accuracy up to 93.43% 

(Kappa value of 0.91). 

 

III. RESEARCH METHODOLOGY 

 

This section explains the methodology of this research. The 

database information used in the research is also provided. 

There are three main stages involved in this research namely, 

the feature extraction, feature selection, and pattern 

classification  

 

A. Database 

The database used is known as the Baby Chillanto database, 

which is a property of the Instituto Nacional de Astrofisica 

Optica y Electronica (INAOE) – CONACYT, Mexico. The 

database is described in reference [5]. The infant cry samples 

ranging from just born to 6-month old infants were recorded 

directly by specialized physicians. The samples were labeled 

with information about the cause of crying during the 

recording process. 

Table 1 shows the description of the infant cry database 

used in this study. All the samples in the database have 1 

second (s) length and the sampling frequency used for our 

study is 8000 Hertz (Hz). The database consists of 340 

samples from asphyxia cries, 192 samples of pain cries, 350 

samples of hunger cries, 879 samples from deaf cries, and 157 

samples of normal cries. In this study, all samples from the 

five categories of cries were used in the classification process. 

Table 1 

Database Description 
 

 Infant Cry 

Category 

Total no. of samples 

used 

No. of samples from each 

category 

1 

2 

3 

4 

5 

Asphyxia 
Pain 

Hunger 

Deaf 
Normal 

 
1918 

340 
192 

350 

879 
157 

 

B. Feature Extraction 

Feature extraction process extracts the important 

characteristics from the cry signal and eliminates irrelevant 

information, such as the channel distortion, particular 

characteristics of the signal, and background noise. Thus, due 

to this reason, feature extraction was applied as the first stage 

in the cry classification system. Figure 1 shows the block 

diagram of the proposed classification system. The input of 

this process is the cry signals and the output is the type of cry 

or pathology of the infant. 

 

 
 

 

 

In this study, MFCC and LPCC features were extracted to 

represent the acoustic characteristics of the cry signals. The 

MFCC and LPCC, which are the spectral features have been 

widely applied in the field of automatic speech recognition 

(ASR) since the mid-eighties. In addition, MFCC and LPCC 

have been proven to be the appropriate representations of 

infant cry signals [5], [26].  

Figure 2 illustrates the extraction process of MFCC and 

LPCC features. The first step in the feature extraction is to 

pre-process the signal with a pre-emphasis filter. The purpose 

of this step is to flatten the spectrum of the signal and reduce 

the effect of finite precision in the signal processing steps later 

[27]. The infant cry signal is a non-stationary signal as it is 

constantly changing. Therefore, a short term analysis must be 

applied by blocking the signal into short frames usually within 

a duration of 10ms to 50ms [28]. Then, each frame was 

windowed by a Hamming window to minimize the signal 

discontinuities. This process was done by tapering the signal 

to zero at the beginning and end part of each frame. 

Infant cry signal 

Feature extraction using MFCC 

and LPCC  

Pattern classification using MLP 

and RBFN 

Type of cry or pathology detected: asphyxia, pain, 

hunger, deaf, and normal 

Feature selection using: OneR, 

ReliefF, FCBF, CNS, and CFS 

Figure 1: Block diagram of the automatic infant cry 

classification system 
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Next, the MFCC and LPCC features were extracted. The 

process for extracting the MFCC feature is illustrated in  

Figure 2(a). After the pre-processing step, the Fast Fourier 

Transform (FFT) was applied to the windowed signal. The 

aim of FFT is to convert the signal from time domain to 

frequency domain. 

 

 
 

Figure 2: Block diagram of features extraction process: MFCC feature (a) and 

LPCC feature (b) 

 

The obtained values from the FFT step were then grouped 

and weighted by a set of triangular filters known as mel-

spaced filterbanks. The first filter is very narrow and acts as an 

indicator to calculate energy that exists near 0 Hz. As the 

frequency increases, the following filters become wider and 

less concern about variations. This process is similar to human 

auditory system as it can detect the frequencies below 1 kHz 

in linear scale and frequencies above 1 kHz in logarithmic 

scale. The formula for computing the mels for a given 

frequency (𝑓) in Hz is shown in Equation (1). 

 

 𝑚𝑒𝑙(𝑓) = 2952 𝑙𝑜𝑔10(1 + 𝑓/700) (1) 

 

The last step is to convert the log mel spectrum back into the 

time domain by using Discrete Cosine Transform (DCT). The 

cepstral representation of the cry spectrum gives a good 

representation of the local spectral characteristics of the signal 

for the given frame analysis. The output of this step is called 

MFCC, which is an acoustic vector. 

The process for extracting the LPCC feature is illustrated in  

Figure 2(b). After the pre-processing step, each windowed 

frame was auto correlated using Equation (2) [29]: 

 

 

𝑠[𝑛] = ∑ 𝑎[𝑘]𝑠[𝑛 − 𝑘]

𝑝

𝑘=1

 (2) 

 

where 𝑠[𝑛] is the signal samples, 𝑎[𝑘] denotes the linear 

predictor coefficients, and 𝑝 is the order of the linear 

predictor. Next, the aim of Linear Prediction Coefficients 

(LPC) analysis is to convert the autocorrelation coefficients 

into LPC. This analysis was performed by using Levinson-

Durbin recursive algorithm [30]. Finally, the LPCC feature 

was derived from the LPC using a recursion technique [31]. 

In addition to the spectral features extracted, we also 

investigated the combination of spectral features with dynamic 

features. Dynamic features is the time derivatives of the 

spectrum-based features [32]. These features contain the 

dynamic characteristics of the spectral features. The first order 

derivatives, also known as Delta (∆) features [28], can be 

calculated using Equation (3) as follows [28]:  

 

 
∆𝐹(𝑚) =

∑ 𝑘𝐹𝑙−𝑘(𝑚)𝐾
𝑘=−𝐾

∑ 𝑘2𝐾
𝑘=−𝐾

 ,   1 ≤ 𝑚 ≤ 𝑄 (3) 

 

where 𝐹 defines the spectral feature, 𝑙 is the number of frames, 

and 𝑄 is the feature order. Also, the time derivatives of the 

Delta (∆) features are often calculated to yield Delta-Delta 

(∆∆) features [33] using Equation (3).  

In this work, each 1s cry sample was divided into short 

frames with 50ms duration and from each frame 16 

coefficients were extracted to produce vectors with 304 

coefficients from each sample. The feature sets generated for 

our experiments are: 

a) 304 MFCC  

b) 304 MFCC + 304 ∆MFCC + 304 ∆∆MFCC 

c) 304 LPCC 

d) 304 LPCC + 304 ∆LPCC + 304 ∆∆LPCC 

 

C. Feature Selection 

Feature extraction from high dimensional data often 

contains redundant and irrelevant features. Theoretically, large 

number of features should offer better discriminating ability. 

However, in practice, given a limited amount of training data, 

a large number of features will possibly cause the classifier to 

over fit the training data as the redundant or irrelevant features 

may negatively influence the learning algorithm [34]. 

Moreover, excessive features will significantly increase the 

computational time. Hence, in this study, we incorporate 

feature selection before the classification task. Feature 

selection extracts the important information from the data and 

reduces the dimensionality so that the most significant parts of 

the data are represented by the selected features. The goals of 

feature selection are to simplify the classifier by selecting only 

the relevant features, reduce the data dimensionality and 

improve or not significantly reduce the classification 

performance [35].  

In general, the feature selection can be categorised into two 

techniques: filter techniques and wrapper techniques [36]. 

Filter techniques are independent of a classifier, whereas 

wrapper techniques apply the classification algorithm as part 

of the function evaluation to search for the relevant feature 

subsets. In this paper, due to the high dimensional of data, we 

only focus on the filter techniques for feature selection as they 

provide fast processing time during the selection of relevance 

subset of features. The following are the filter techniques 

applied in our work: 
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OneR [37] calculates the weight or value of each feature 

individually. The OneR algorithm constructs one rule for each 

feature in the data by determining the most frequent class for 

each feature value. In other words, the most frequent class is 

the class that occurs most often for that particular feature 

value. It then calculates the error rate for each rule constructed 

from each feature. Finally, it selects the features with the 

smallest error rate. 

ReliefF [38] randomly selects an instance from the data and 

calculates its nearest neighbours from the same and different 

class. The values of the features of the nearest neighbours are 

compared to the sampled instance and used to update the 

individual relevance scores of each feature. The theory is that 

a relevance feature should have the ability to discriminate 

between instances from other classes and have the same value 

for instances within the same class.  

Fast Correlation-Based Filter (FCBF) [39] applies 

Symmetrical Uncertainty (SU) [40] to measure the correlation 

between features. FCBF consists of two stages: (1) choosing a 

subset of relevant features and (2) choosing predominant 

features from the relevant features. FCBF searches for the best 

feature subset using backward selection technique with 

sequential search strategy. The searching process stops when 

there is no more feature to be discarded. 

Consistency-Based Subset Evaluation (CNS) [41] 

searches for subsets of features which contain a strong single 

class majority. In general, the algorithm searching process 

prefers small feature subsets with a high-class consistency. 

Thus, a search strategy is applied in conjunction with CNS in 

order to select the smallest feature subset with consistency 

similar to that of full set of features. In this work, the search 

strategy applied in CNS algorithm is a simple genetic 

algorithm (GA) [42]. 

Correlation-Based Feature Selection (CFS) [43] evaluates 

the relevance subsets of features instead of the individual 

features. The algorithm consists of a heuristic merit of subset 

evaluation that measures the relevance of individual feature 

for class prediction and also the inter-correlation level among 

features. The main hypothesis of CFS is that a good feature 

subset consists of features that are highly correlated with the 

class, yet poorly correlated with each other [43]. CFS consists 

of two main stages. It first calculates the matrix of feature-

class and feature-feature correlations. In the second stage, CFS 

searches the feature subset space in order to select the best 

feature subset. In this work, the search strategy applied in 

CNS algorithm is simple GA [42]. 

 

D. Pattern Classification 

ANN has been widely applied in many areas due to its 

characteristics such as high learning accuracy, robustness, and 

strong ability for non-linear mapping. Among various 

architectures of ANN, RBFN and MLP have the ability to 

avoid local minima as these networks follow the supervised 

learning process by using the information from input and 

output for training the network weights [44]. In this work, we 

applied MLP and RBFN to compare the effectiveness of 

feature selection techniques used. 

Multilayer Perceptron (MLP) is a feed forward neural 

network that consists of several layers of neurons with 

unidirectional connections between them and usually trained 

with back-propagation algorithms [45]. The MLP architecture 

used in our work consisted of three layers: one input layer, a 

hidden layer, and an output layer. The hidden layer processed 

and transmitted the information in the input pattern to the 

output layer. A sigmoid activation was used in the hidden 

layer. The number of hidden neurons was determined 

experimentally and we set it to 10. The learning rate and 

momentum factor were set to 0.3 and 0.2 respectively. 

Radial Basis Function Network (RBFN) consists of three-

layer feed forward type neutral network. The input is 

converted using the basis functions in the hidden layer and the 

output layer contains the weighted sum of linear combinations 

of the hidden nodes responses. The basis functions applied in 

this work is the normalized Gaussian radial basis function. 

RBFN training phase was executed in two steps. In the first 

step, the centers and the spreads of the radial basis function 

were obtained from the input variable. In the second step, the 

weights were adjusted in order to reduce the error function. In 

this work, the parameters of the radial basis function (the 

centers and the spreads) were determined using K-means 

clustering algorithm [46] with a predetermined cluster 

number. The number of clusters was determined 

experimentally and we set it to 10. Finally, the connection 

weights were updated using backpropagation method. 

 

IV. RESULTS AND DISCUSSIONS 

 

Both feature selection and pattern classification have been  

performed in WEKA environment [47]. In this study, we 

applied 10-fold cross validation scheme to prove the reliability 

of the classification results obtained. This process randomly 

separates the data into 10 subsets or folds of approximately the 

same size. A classifier was built and tested 10 times, the 

testing was done on one of the folds and the training process 

was done on the remaining folds. The process was repeated 

until all folds were used for testing and training the classifier. 

For each fold, the dimensionality was reduced by each feature 

selection technique, before passing it to the classifiers. 

Dimensionality reduction was performed by cross validating 

the feature rankings generated by each selection technique 

with respect to the current classifier. Features with the best 

cross validated performance was selected as the best subset 

[48]. Feature selection was performed only on the training 

data and the classifier was tested using the selected features on 

the test data. 

In this work, two performance metrics that have been 

widely considered to evaluate the binary and multiclass 

problems were used: accuracy and Kappa statistic [49]. In the 

multiclass problem, considering only the accuracy may not be 

an appropriate evaluation particularly when the class has 

imbalance proportions. Thus, we included Kappa statistic to 

evaluate the agreement between the predicted and the 

observed classifications of dataset, while correcting the 

agreement that occurs by chance [50]. Kappa statistic can be 

calculated using Equation (4) [51] as follows: 

 

 
𝐾 =

𝑛 ∑ ℎ𝑖𝑖 − ∑ 𝑇𝑟𝑖𝑇𝑐𝑖
𝑚
𝑖=1

𝑚
𝑖=1

𝑛2 − ∑ 𝑇𝑟𝑖𝑇𝑐𝑖
𝑚
𝑖=1

 (4) 
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where ℎ𝑖𝑖  is the number of true positives of each class, 𝑛 is the 

total number of samples, 𝑚 is the number of classes, and 𝑇𝑟𝑖 

and 𝑇𝑐𝑖  are the rows’ and columns’ counts respectively. Kappa 

statistic is a simple and useful metric for evaluating the 

classification rate in a multiclass problem while compensating 

for random successes. The difference between classification 

accuracy and Kappa statistic is the scoring of the correct 

classifications. Accuracy scores all the correct classifications 

over all classes, whereas Kappa statistic scores the correct 

classifications independently for each class and aggregates 

them [51]. Kappa statistic is less sensitive to randomness 

caused by a different number of examples in each class. It 

ranges from -1 (total disagreement) to 1(total agreement), and 

𝐾=0 shows a random classification. 

The accuracy (%) and Kappa value, averaged over 10-fold 

cross validation were calculated for each feature set before and 

after feature selection. To determine whether the difference is 

statistically significant or not, we performed Wilcoxon 

Signed-Rank Test with 95% of confidence using each result 

obtained before and after feature selection. Table 2 and Table 

3 present the results of feature selection with MLP and RBFN 

respectively. From Table 2, it can be seen that no feature 

selection techniques performed significantly better than MLP 

without feature selection (Unselect). However, ReliefF and 

CFS performed better than the other feature as they do not 

significantly degrade the performance of the classifier. OneR 

degraded the classifier performance on two feature sets and 

both FCBF and CNS showed degradations for all four feature 

sets used.  From Table 3, the best result is from OneR, which 

improved RBFN on one feature set but also degraded it on 

one. ReliefF and CFS both are in the second place as they only 

degraded on one feature set. FCBF and CNS showed the worst 

performance as they degraded on all four feature sets used. 

 
 

Table 2 

Results of Feature Selection with MLP 
 

Feature set Performance metrics MLP (Unselect) OneR ReliefF FCBF CNS CFS 

MFCC 

 

Accuracy 88.22 85.61• 85.87 83.63• 84.20• 87.96 

Kappa statistic 0.83 0.80• 0.80 0.77• 0.78• 0.83 

MFCC+∆MFCC +∆∆MFCC 

 

Accuracy 89.47 90.25 88.90 84.46• 75.75• 90.04 

Kappa statistic 0.85 0.86 0.84 0.78• 0.66• 0.86 

LPCC 

 

Accuracy 88.79 86.08• 88.95 84.36• 85.45• 87.49 

Kappa statistic 0.84 0.80• 0.84 0.78• 0.79• 0.82 

LPCC+∆LPCC +∆∆LPCC 
 

Accuracy 89.16 89.05 88.48 84.93• 67.47• 89.73 
Kappa statistic 0.85 0.85 0.84 0.79• 0.53• 0.85 

 
MLP (UnSelect), OneR, ReliefF, FCBF, CNS, and CFS denote the MLP classifier without feature selection or using five different selection techniques 

respectively. The table presents how often each technique performs significantly better (denoted by “◦”) or worse (denoted by “•”) than without feature selection. 

 
Table 3 

Results of Feature Selection with RBFN 

 

Feature set Performance metrics RBFN (Unselect) OneR ReliefF FCBF CNS CFS 

MFCC 

 

Accuracy 91.61 88.27• 88.16• 88.22• 88.32• 90.67 

Kappa statistic 0.88 0.83• 0.83• 0.83• 0.83• 0.87 

MFCC+∆MFCC +∆∆MFCC 
 

Accuracy 92.54 93.06 92.91 89.26• 80.55• 93.43 
Kappa statistic 0.89 0.90 0.90 0.85• 0.72• 0.91 

LPCC 

 

Accuracy 88.63 90.25◦ 89.99 85.87• 86.08• 89.26 

Kappa statistic 0.84 0.86◦ 0.86 0.80• 0.80• 0.85 

LPCC+∆LPCC +∆∆LPCC 
 

Accuracy 91.97 91.55 92.54 87.48• 73.36• 88.89• 
Kappa statistic 0.89 0.88 0.89 0.82• 0.62• 0.84• 

 
RBFN (UnSelect), OneR, ReliefF, FCBF, CNS, and CFS denote the RBFN classifier without feature selection or using five different selection techniques 

respectively. The table presents how often each technique performs significantly better (denoted by “◦”) or worse (denoted by “•”) than without feature 

selection. 
 

 

Table 4 
Number of features selected for MLP and RBFN and time taken (s) to select features and train the classifiers. 

 

Feature set  OneR ReliefF FCBF CNS CFS 

MFCC 
 

 

No of features 
MLP 

RBFN 

90 (30%) 
140.13 

72.86 

90 (30%) 
307.59 

177.26 

28.2 (9%) 
52.17 

476.42 

41 (13%) 
65.64 

449.69 

92.8 (31%) 
139.10 

71.33 

MFCC+∆MFCC +∆∆MFCC 
 
 

No of features 
MLP 

RBFN 

320 (35%) 
431.36 

63.96 

320 (35%) 
754.23 

457.49 

40 (4%) 
54.19 

480.63 

54.4 (6%) 
66.30 

1859.61 

329.7 (36%) 
447.25 

165.14 

LPCC 

 
 

No of features 

MLP 
RBFN 

125 (41%) 

139.18 
69.48 

125 (41%) 

275.71 
201.31 

39.5 (13%) 

52.97 
569.53 

41 (13%) 

49.51 
474.34 

125.9 (41%) 

133.93 
57.40 

LPCC+∆LPCC +∆∆LPCC 
 

 

No of features 

MLP 
RBFN 

200 (22%) 

224.54 
81.90 

200 (22%) 

629.18 
431.27 

54.7 (6%) 

83.45 
805.66 

52.8 (6%) 

81.18 
1489.68 

207.2 (23%) 

365.47 
192.64 
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In addition to accuracy and Kappa statistic, we also 

recorded the number of features selected and time taken (in 

seconds) to select the features and train the classifier. Table 4 

shows the number of selected features and time taken to select 

features and train the classifier in seconds (s). We find that the 

feature selection techniques were able to greatly reduce the 

feature space. From Table 4, OneR, ReliefF and CFS retained 

approximately an average of 32% of the features. Meanwhile, 

FCBF and CNS retained an average of only 8% and 10% of 

the features, respectively. In comparison to the time taken to 

select the features and train the MLP classifier, FCBF and 

CNS showed the fastest time. OneR and CFS required about 

the same amount of time, while ReliefF has the slowest time. 

For RBFN, OneR and CFS were faster than the other 

techniques. On the other hand, FCBF and CNS showed the 

slowest speed. 

The success of ReliefF and CFS could be due to their ability 

to determine the dependencies between features. Although 

they were not able to determine the strong interacting features 

in a reduced feature subset, they managed to maintain the 

performance of classifiers on most feature sets by selecting the 

relevant features under moderate interaction levels [43]. FCBF 

and CNS conversely were not able to determine the 

dependencies between features. One reason why FCBF 

performed poorly among others could be accounted for its 

search strategy. In FCBF, a predominant feature was used to 

eliminate features that were redundant to it. However, in a 

situation where the features were highly correlated, FCBF may 

eliminate a large number of features as they were considered 

to be redundant. From Table 4, FCBF retained the lowest 

number of features among others with an average of only 8% 

of the original features. All the selection techniques applied 

were not able to significantly improve the performance of the 

classifiers on most feature sets. Techniques, such as OneR and 

ReliefF only calculated the individual score of each feature 

and ignored the feature dependencies. Although FCBF, CNS, 

and CFS searched for the best subset by calculating both the 

individual score of each feature and the dependencies between 

features, they did not consider selecting strong correlated 

features because these features were considered to be 

redundant. However, two completely irrelevant features by 

themselves can become relevant when combined together, and 

the combination of two strongly correlated features is better 

than any independent features [52]. Therefore, ignoring 

strongly correlated features may significantly reduce the 

classification performance. 

To demonstrate the performance of selection techniques 

depending on feature sets visually, we produced Figure 3 and 

Figure 4 using Table 2 and Table 3 respectively. Figure 3 and 

Figure 4 were produced based on kappa statistic results. 

From Figure 3, all selection techniques except ReliefF and 

CNS showed improvement when using the combination of 

spectral and dynamic features. ReliefF showed no 

performance improvement for LPCC features as it obtained 

similar results for LPCC and LPCC+∆LPCC +∆∆LPCC with 

Kappa value of 0.84. For CNS, the performance was 

significantly reduced when using the combination of spectral 

and dynamic features. 

From Figure 4, all techniques except CFS and CNS showed 

improvement in performance when using the combination of 

spectral and dynamic features. CFS showed a slightly reduced 

performance from Kappa value of 0.85 (LPCC) to Kappa 

value of 0.84 (LPCC + ∆LPCC + ∆∆LPCC). Meanwhile, CNS 

performance reduced significantly when using MFCC + 

∆MFCC + ∆∆MFCC and LPCC + ∆LPCC + ∆∆LPCC feature 

sets. 

 
 

Figure 3: Kappa statistic results using MLP 

 

 
 

Figure 4: Kappa statistic results using RBFN 

 

Figure 3 and Figure 4 indicate that most of the selection 

techniques showed improvement in performance when using 

the combination of spectral and dynamic features. The spectral 

features are the representation of short-term stationary signals, 

thus time domain information is not presented. However, the 

infant cry is a non-stationary signal as the articulators 

constantly change their position at a certain rate during the 

production of cry sounds. The dynamic information of the 

spectral features can be obtained by extracting the dynamic 

features. Yet, CNS showed significant reduction in 

performance when using the combination of spectral and 

dynamic features.  The technique was not able to select the 

best feature subset when the feature dimension increased 

significantly. One reason could be because CNS focuses on 

finding the smallest feature subset with consistency similar to 

that of full set of features. Since a feature subset is considered 

consistent if there are no two instances with similar feature 

values that have different class labels, the searching algorithm 

may select a small feature subset that has a complicated 

function, while ignoring larger feature sets admitting simple 

rules [35]. 

In comparing the classifiers, RBFN obtained better 

classification performance than MLP on all feature sets. 

Moreover, RBFN required significantly less time to select 

features and train the classifier, except when using FCBF and 

CNS. The MLP was computationally time intensive as it was 

trained in fully supervised manner and required more number 
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of iterations during the network training process in order to 

obtain the best classification result. In contrast, the RBFN 

performed faster due to unsupervised training process in the 

hidden layer.  

 

V. CONCLUSION 

 

In this paper, we studied different features, selection 

techniques and classifiers to perform multiclass classification 

of infant cry. We found that the combination of spectral and 

dynamic features was able to improve the performance of the 

classification system for all selection techniques except CNS. 

For selection techniques, OneR, ReliefF, and CFS achieved 

good performance on most cases. FCBF and CNS, on the 

other hand showed the worst performance as they reduced the 

system performance after the feature selection for all cases. 

For classifiers, RBFN obtained better performance in terms of 

accuracy and Kappa statistic than MLP. Moreover, RBFN 

required less time to select features and train the classifier 

when applied with OneR, ReliefF, and CFS selection 

techniques. The best classification accuracy of 93.43% (Kappa 

value of 0.91) was obtained from MFCC + ∆MFCC + 

∆∆MFCC feature set when using CFS selection technique and 

RBFN classifier. Although CFS was not able to significantly 

improve the classifier performance, it was able to achieve the 

goal of feature selection by maintaining the performance of 

the classifier with a reduced feature subset in most cases.  
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