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Abstract—A regular synthesis method of the full class of ter-

nary bent-sequences based on their representation in the form of 

3-bent-squares is developed. The formula for the nonlinearity 

estimation of ternary sequences, based on their Vilenkin-

Christenson spectral coefficients is introduced. The distribution 

of nonlinearity of the full code of length 9N   is researched. 

 

Index Terms—Bent-Sequence; Many-Valued Logic; Vilenkin-

Christenson Transform; Nonlinearity. 

 

I. INTRODUCTION 

 

In recent years, the use of advanced algebraic constructions in 

modern telecommunication technology is becoming more 

widespread. This fact has attracted the attention of researchers 

for the development of methods of synthesis of such advanced 

algebraic constructions as perfect binary arrays [1], binary [2] 

and many-valued [3] de Bruijn sequences, constructions of the 

Galois fields [4], etc. Amongst the advanced algebraic con-

structions, a special place is occupied by bent-sequences, 

which have uniform absolute values of spectral coefficients 

and maximum value of nonlinearity. Since its introduction by 

O. Rothaus [5], bent-functions have been used in modern sci-

ence and technology. The uniform spectral properties of bent-

functions lead to their application in the form of C-codes in 

MC-CDMA (Multi Code Code Division Multiple Access) 

technology for reducing the PAPR (Peak-to-Average Power 

Ratio) of signals [6] and in cryptography for constructing 

highly nonlinear S-boxes [7], and building pseudo-random key 

sequence generators [8, 9]. 

Another trend in the development of modern methods in the 

branch of telecommunications and information security is the 

implementation of the principles of many-valued logic [10]. 

Thus, the method of a code division multiple access based on 

Vilenkin-Christenson functions is proposed in [11], the meth-

od of synthesis of S-boxes, optimal according to the criterion 

of correlation dependence between output and input vectors is 

proposed in [12], the generation method of ternary pseudoran-

dom key sequences is proposed in [13], and in particular, for 

application of quantum cryptography in [14]. Many of the 

perspective applications of many-valued logic are in some 

way connected with the advanced algebraic constructions over 

the Galois field (3)GF  of three elements {0,1, 2} , particularly 

with the bent-functions.  

However, the bent-functions over (3)GF  are not sufficient-

ly researched, in particular, there are no regular (non brute 

force) methods of their synthesis or even a way to estimate the 

level of nonlinearity of an arbitrary ternary function compared 

to that of bent-functions. 

The purpose of this paper is to develop a regular synthesis 

method of ternary bent-functions of two variables and the cri-

teria of estimation of nonlinearity of arbitrary ternary func-

tions. 

In Section II of this paper, we consider the basic definition 

of ternary bent-functions and introduce a new form of repre-

sentation of ternary bent-sequences. Section III is devoted to 

the development of a regular synthesis method of ternary bent-

functions of two variables. In Section IV, we introduce a 

method of estimation of nonlinearity of an arbitrary ternary 

function ( NL -coefficient). 

 

II. MAIN DEFINITIONS 

 

Let a ternary complex matrix of Vilenkin-Christenson trans-

form of order 9N   be: 
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 
 
 
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 
 
 
 
 
 
 
 
 

 

(1) 

 
A. Definition 1 [13] 

Ternary sequence 
0 1 1[ , ,..., ,..., ]i NH h h h h   of length 

23 , 1,2,3,...mN m  , where the coefficients are 

 0 120 240, ,j j j

ih e e e  called a ternary bent-sequence, if it has a 

uniform distribution of absolute values of Vilenkin-
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Christenson transform coefficients, which can be represented 

in matrix form: 

(ω) , ω 0, 1NB H V const N       (2) 

 

where 
NV  is Vilenkin-Christenson matrix [15] of order N and

NV  is the matrix from complex conjugate elements of 
NV .  

Bent-sequences are considered as the truth tables of corre-

sponding bent-functions, which can be represented, for exam-

ple, in algebraic normal form [16]; hence, bent-sequences and 

bent-functions are just different ways to describe the same 

natural phenomenon. 

An important and actual task is to develop the regular 

method of synthesis of the full class of ternary bent-sequences 

of two variables. To solve this task, in this paper we propose a 

new form of representation of ternary bent-sequences as 3-

bent-squares. 

Consider the Vilenkin-Christenson matrix of order n N , 

i.e., in our case, 3n  : 
 

0 0 0

0 120 240

3

0 240 120

j j j

j j j

j j j

e e e

V e e e

e e e

 
 

  
 
 

 (3) 

 

and also let us represent the original ternary bent-sequence in 

the form of a sequence of three segments: 

 

0 1 2

3 54

6 7 8

0 1 2 3 4 5 6 7 8

1 0 1 2

2 3 4 5

3 6 7 8

[ , , , , , , , , ]

χ

χ ,

χ

ja ja ja

ja jaja

ja ja ja

H h h h h h h h h h

h h h e e e

h h h e e e

h h h e e e

 

    
    

       
         

 (4) 

 

where o o oarg( ) {0 ,120 ,240 }, 0, 1i ia h i N    . 

In order to develop a regular method for the synthesis of 

full class of ternary bent-sequences, we introduce the follow-

ing definition. 

 

B. Definition 2 

3-bent-square is the matrix B  whose lines are Vilenkin-

Christenson transform coefficients of vectors {χ }i . 

In the case of ternary bent-functions of two variables, it is 

easy to write down the values of these coefficients. 
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(5) 

III. REGULAR SYNTHESIS METHOD OF THE TERNARY           

BENT-FUNCTIONS OF TWO VARIABLES 

 

Let us consider a bent-sequence: 

 
0 0 0 0 120 240 0 240 120

1 [ ]j j j j j j j j jH e e e e e e e e e  (6) 

  

which is formed by concatenation of rows of Vilenkin-

Christenson matrix 
3V . By multiplying sequence (6) on a 

Vilenkin-Christenson matrix 
9V  (1) we find its spectral coef-

ficients: 

 
0 0 0 0 240 120 0 120 240(ω) [3 3 3 3 3 3 3 3 3 ]j j j j j j j j j

B e e e e e e e e e   (7) 

 

which fully satisfy condition (2), and thus, the sequence (6) is 

a bent-sequence. 

For the sequence (6) by means of Definition 2 and (5), we 

can write down its 3-bent-square: 

 

3 0 0

0 3 0

0 0 3

B

 
 


 
  

 
(8) 

 

which is a ternary analogue of the binary Agievich bent-square 

[17], which represents the Maiorana-McFarland construction. 

It is easy to make a transition from a 3-bent-squere to the 

temporal representation of ternary bent-sequence using the 

following formula: 

 

( )
.

cat B V
H

n


  (9) 

 

where cat  — is the operation of concatenation. 

Proposition 1.1. 3-bent-square (8) generates a set of cardi-

nality 11 ! 3! 6J n    of 3-bent-squeres by applying all the 

possible permutations of its rows. 

Therefore, on the basis of 3-bent-square (8), the following 

six 3-bent-squares can be built, each of which defines its cor-

responding ternary bent-sequence: 
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  

11 12 13

14 15 16

0 0 0 0 240 120 0 120 240

11

0 0 0 0

12

3 0 0 3 0 0 0 3 0

0 3 0 ; 0 0 3 ; 3 0 0 ;

0 0 3 0 3 0 0 0 3

0 3 0 0 0 3 0 0 3

0 0 3 ; 0 3 0 ; 3 0 0 ;

3 0 0 3 0 0 0 3 0

;j j j j j j j j j

j j j j

B B B

B B B

H e e e e e e e e e

H e e e e

     
     

  
     
          

     
     

  
     
          



  

 

 

 

 

120 240 0 240 120

0 240 120 0 0 0 0 120 240

13

0 240 120 0 120 240 0 0 0
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0 120 240 0 240 120 0 0 0

15

0 120 240 0 0 0 0 240 120

16

;

;

;

;

.

j j j j j

j j j j j j j j j

j j j j j j j j j

j j j j j j j j j

j j j j j j j j j

e e e e e

H e e e e e e e e e

H e e e e e e e e e

H e e e e e e e e e

H e e e e e e e e e









 (10) 

Proposition 1.2. The rows of each matrix , 1,2,...,6iB i   

(10) may be multiplied element by element (encoded) by one 

of a ternary sequence of length 3n  . The total number of 

new structures of 3-bent-squares and, respectively, ternary 

bent-sequences which can be derived from each of an initial 3-

bent-squares is 
3

12 27J n  . 

For example, let us show the process of coding of 3-bent-

square (8) with the sequence 
0 120 240α { }j j je e e . We get the 

result of a new 3-bent-square and the corresponding ternary 

bent-sequence. 

 

 

120

121

240

0 0 0 120 0 240 240 0 120

121

3 0 0

0 3 0 ;

0 0 3

[ ].

j

j

j j j j j j j j j

B e

e

H e e e e e e e e e

 
 


 
  



 (11) 

 

Thus, on the basis of Propositions 1.1., 1.2., we can build a 

Maiorana-McFarland class of ternary bent-sequences with 

total cardinality 1 11 12 ! 3 6 27 162nJ J J n       of ternary 

bent-sequences. 

However, the experimental data obtained in [13] show that 

the total number of ternary bent-functions of two variables 

reaches the value 
0 486J  ; thus, there are other sequences 

that do not belong to the Maiorana-McFarland class [18]. 

In this paper, it is shown that the remaining 

2 0 1 486 162 324J J J      ternary bent-sequences may be 

represented by the following generic structure 

 

 

oo o
1311 12

oo o
2321 22

o o o
31 32 33

ββ β

ββ β

2

β β β

3 3 3

3 3 3

3 3 3

jj j

jj j

j j j

e e e

B e e e

e e e

 
 
 
 
 
 

, (12) 

 

where, depending on the structure of the angular coefficients 

βij
 we can classify 3-bent-squares of the second type to 2 sub-

types. 

Subtype 1. 3-bent-squares of the first subtype containing 

two identical rows. It is found that a complete class of 3-bent-

squares of the first subtype can be constructed on the basis of 

the generating class containing 12 elements, which is listed in 

Table 1. In order of brevity, Table 1 contains only the angular 

coefficients βij
. 

 
Table 1 

The angular coefficients of 3-bent-squeres of the first subtype 

 

30 30 270
30 30 270

150 150 30

 
 
 

 
30 30 270
30 30 270
270 270 150

 
 
 

 
30 30 270

150 150 30
150 150 30

 
 
 

 
30 30 270
270 270 150
270 270 150

 
 
 

 

330 90 330
330 90 330
90 210 90

 
 
 

 
330 90 330
330 90 330
210 330 210

 
 
 

 
330 90 330
90 210 90
90 210 90

 
 
 

 
330 90 330
210 330 210
210 330 210

 
 
 

 

30 150 150
30 150 150

150 270 270

 
 
 

 
30 150 150

150 270 270
150 270 270

 
 
 

 
90 90 210
90 90 210
210 210 330

 
 
 

 
90 90 210
210 210 330
210 210 330

 
 
 

 

 
Let us formulate the rules of the reproduction of 3-bent-

squares of the first subtype on the basis of the following prop-

osition: 

Proposition 2.1. Each 3-bent-square of form (12) of the 

first subtype generates a new six 3-bent-squares on the basis 

of the following basic permutations of rows and columns 

 

 
1 2 3
2 3 1
3 1 2

P
 

  
 

. (13) 

 

Thus, the cardinality of the 3-bent-squares set of the first 

subtype, taking into account Proposition 2.1., and the struc-

ture of the angular coefficients matrices is 
21 12 3 3 108J     . 

Subtype 2. All lines of 3-bent-squeres of the second sub-

type are different. It is found that the generating class of the 3-

bent-squares angular matrices of second subtype contains 36 

elements, which are presented in Table 2. 

 
Table 2 

The angular coefficients of 3-bent-squeres of the second subtype 

 

30 30 270
30 270 30
270 30 30

 
 
 

 
30 30 270
30 270 30

150 270 270

 
 
 

 
30 30 270
270 30 30
270 150 270

 
 
 

 
30 30 270
30 150 150

150 30 150

 
 
 

 

30 30 270
30 150 150
270 150 270

 
 
 

 
30 30 270

150 30 150
150 270 270

 
 
 

 
330 90 330
90 330 330
330 330 90

 
 
 

 
330 90 330
90 330 330
90 90 210

 
 
 

 

330 90 330
330 330 90
210 90 90

 
 
 

 
330 90 330
90 90 210
330 210 210

 
 
 

 
330 90 330
210 90 90
210 210 330

 
 
 

 
330 90 330
330 210 210
210 210 330

 
 
 

 

30 270 30
270 30 30
270 270 150

 
 
 

 
30 270 30
30 150 150

150 150 30

 
 
 

 
30 270 30
30 150 150
270 270 150

 
 
 

 
30 270 30

150 150 30
150 270 270

 
 
 

 

90 330 330
330 330 90
90 210 90

 
 
 

 
90 330 330
90 90 210
210 330 210

 
 
 

 
90 330 330
90 210 90
210 210 330

 
 
 

 
90 330 330
210 210 330
210 330 210

 
 
 

 

330 330 90
90 210 90
330 210 210

 
 
 

 
330 330 90
210 90 90
210 330 210

 
 
 

 
330 330 90
330 210 210
210 330 210

 
 
 

 
270 30 30
150 150 30
150 30 150

 
 
 

 

270 30 30
150 150 30
270 150 270

 
 
 

 
270 30 30
150 30 150
270 270 150

 
 
 

 
30 150 150

150 150 30
150 30 150

 
 
 

 
30 150 150
270 150 270
270 270 150

 
 
 

 

90 90 210
90 210 90
210 90 90

 
 
 

 
90 90 210
90 210 90
330 210 210

 
 
 

 
90 90 210
210 90 90
210 330 210

 
 
 

 
90 210 90
210 90 90
210 210 330

 
 
 
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150 150 30
270 150 270
150 270 270

 
 
 

 
150 30 150
150 270 270
270 270 150

 
 
 

 
330 210 210
210 210 330
210 330 210

 
 
 

 
270 150 270
150 270 270
270 270 150

 
 
 

 

 
New structures of 3-bent-squares of the second subtype, and 

respectively, new ternary bent-sequences can be obtained on 

the basis of following statement: 

Proposition 2.2. Each 3-bent-square of form (12) of the 

second subtype generates a new six 3-bent-squares on the ba-

sis of all possible 3! 6  permutations of rows 

 

 

1 2 3
1 3 2
2 1 3
2 3 1
3 2 1
3 1 2

P

 
 
 
 
  

. (14) 

 

Therefore, with consideration of Proposition 2.2. and the 

table of angular coefficients matrices of the second subtype 

(Table 2), we can build 6 36 216   new structures of 3-bent-

squares. 

The total cardinality of the second class of 3-bent-squares is 

2 108 216 324J     which is different from the 3-bent-

squares, and accordingly, ternary bent-sequences. 

The cardinality of class of all synthesised by the regular 

method ternary bent-sequences is  

 

 
1 2 162 324 486J J J     , (15) 

 

which is full class and complies with the results obtained in 

[13]. 

 

 

IV. NONLINEARITY ESTIMATION METHOD OF AN ARBITRARY 

TERNARY SEQUENCE 

 

The most important characteristic of any construction, 

which is used in cryptography is nonlinearity. Nonlinearity is 

generally estimated as the degree of similarity of the algebraic 

construction with a variety of constructions, which are consid-

ered to be linear [19]. Examples of such constructions are the 

Walsh functions or their many-valued analogues — Vilenkin-

Christenson functions. 

For example, consider a 3-function: 

 

  120 0 240 120 0 240 120 0 240j j j j j j j j jA e e e e e e e e e , (16) 

 

which has the following Vilenkin-Christenson spectral coeffi-

cients: 

 

 
 

o

9

1200 0 9 0 0 0 0 0 0

A

j

A V

e

   


. (17) 

Each Vilenkin-Christenson spectral coefficient (17) charac-

terises the value of the content of each Vilenkin-Christenson 

function (the row of NV  matrix) in the investigated sequence. 

As the set of Vilenkin-Christenson functions is taken as the 

set of the most linear functions, we can estimate the value of 

the linearity of the function by the maximum value of the 

spectral coefficients. Thus, the maximum spectral coefficient 

of sequence (16) is  max 9L S  , which is said to be the 

value of linearity. Indeed, it is easy to verify that the sequence 

(16) is the modified third row of the Vilenkin-Christenson 

matrix, which causes the absolute value of the third coefficient 

of the spectrum (17) to obtain the maximum possible value, 

equals to the length N . 

Since the full ternary code can be regarded as a linear vec-

tor space, in which Vilenkin-Christenson functions are the 

orthonormal basis, then Parseval’s equality is justified for 

Vilenkin-Christenson transform [20] 
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where k  — is the number of variables, in which the equiva-

lent 3-function depends, 3logk N  and k n N   for ter-

nary bent-functions. 

Thus, the minimum absolute value of Vilenkin-Christenson 

transform coefficients is achieved when their absolute values 

are constant and equal to 
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As an estimation of the nonlinearity of 3-functions, it is ra-

tional to use the difference between the maximum possible 

value of Vilenkin-Christenson transform coefficients (absolute 

value) and Vilenkin-Christenson transform maximal coeffi-

cient (absolute value) of the investigated 3-function. This the-

sis can be easily generalised to the case of q -function 

 

 

 

 1

max , 2;

1
2 max , 2.

2

k

k

q S q

NL
S q

  


 
 



. (20) 

 

Table 3 shows the distribution of NL -coefficients for the 

full code of length 9N  . 

 
Table 3 

Distribution of the NL -coefficients for full code of length 9N   

 

NL  0 1.4502 2.7550 3 3.8038 4.4174 6 

Number of 

vector 

27 486 1944 1944 4104 10692 486 

Comment Affine 
functions 

— — — — — Bent-
functions 

 
In this paper, we consider the case 3q   in detail, whereas 

the case of 3q   may be the subject of further research. 
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CONCLUSION 

 

Here are the main results of the research: 

1. For the first time with help of a regular method, the full 

class of ternary bent-sequences of length 9N   was 

synthesised. The main structures used for the synthesis 

were the analogues of Agievich 3-bent-squares. 

2. The concept of the NL -coefficient, which characterises 

the degree of nonlinearity of an arbitrary ternary func-

tion was introduced. The results of research of the dis-

tribution of vectors of ternary full code of length 9N   

are listed. 

3. Received results are the basis for the development of 

cryptographic constructions based on the principles of 

many-valued logic, such as many-valued block encryp-

tion algorithms, many-valued pseudorandom key se-

quences generators, many-valued nonlinear transforms. 

The full class of ternary bent-sequences is also the basis 

for the construction of C-codes used to reduce the Peak-

to-Average Power Ratio values in the CDMA technolo-

gy. 

Expansion of the received results on Galois fields of charac-

teristics 3p  , is of interest. 
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