
 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 9 September – December 2016 31

A Distributed Method for Multiplication of Large

Matrices using MSMQ Middleware

Hassan Ziafat, Sayyed Morteza Babamir
University of Kashan, Kashan, Iran

ziafat@grad.kashanu.ac.ir

Abstract—Multiplication of large matrices is time consuming.

Although parallel algorithms have been presented to reduce the

multiplication time, distributed computing and algorithm

mechanism is also able to help us in reducing the time. In this

paper, we aim to present a new distributed method for

multiplication large matrices using the MSMSQ middleware. The

multiplication of the large matrices is used in various engineering

fields. We came to a conclusion that the proposed method

reduces the multiplication time of large matrices to an adequate

level.

Index Terms—Multiplication; Large Matrices; Distributed

Computing; Middleware; MSMSQ.

I. INTRODUCTION

A distributed system consists of independent computers which

is connected each other through a network and a middleware

interface. The computers, which are viewed as an integrated

system for its users, communicate through the exchange of

message and provide various services for its users. Figure 1

shows the structure of a distributed system [1].

Figure 1:Distributed systems architecture [1]

One of the important features of distributed systems is that

their users and the methods of communication are hidden. A

distributed system is a faulty tolerant, which means that if one

of its stations fails, it is still accessible for its user. Moreover,

users are not aware of the station failure and recovery.

A distributed system speeds up the execution of tasks as it

uses several computers simultaneously. The objectives of

distributed systems are providing the following matters to

their users: (1) high resource accessibility, (2) access

transparency in using resources, (3) communication intricacies

hiding, (4) openness (i.e. the acceptance of adding new

standards by the system, and (5) scalability and extensibility.

Distributed system aims that users can easily have access to

the remote resources and control the resources when sharing

with others. Such accessibility facilitates information

exchange and communication and makes the system more

reliable.

A distributed system, which is capable of presenting itself as

a single system to the users and its applications is called a

transparent system. The transparency feature of a distributed

system indicates hiding the dispersal of the system

components (computer) for users. There are some types of

transparency [1]:

 Location: Hiding physical location of resources from

the users using Domain Name Server (DNS);

 Relocation: Hiding relocation of resources from the

users; and

 Concurrency: Hiding concurrent use of data and

resources from users.

There are three types of scalability:

 Size: adding new resources to the system easily; and

 Geography: distributing users and resources

geographically.

Hereafter, “resources" refers to the data that contain the

matrices elements; we distribute them between clients (the

system workstations) in order to calculate matrix

multiplication.

A. Distributed Systems

There are different types of distributed systems:

 Computing Systems: a distributed computing system is

one that is highly efficient in computing distributed

applications: clusters and grids are such systems[1];

 Information Systems: These systems are connected

directly to a database with a client – server structure;

and

 Pervasive Systems: connected mobile devices with

limited memory and processing power.

In this paper, we applied the distributed computing system,

where a middleware is used to communication between users.

B. Middleware

A networked system without the middleware is not

recognised as a distributed system, single or coherent system

for their users. To convert a networked system into a

distributed system, an additional software layer is required to

be installed and executed on all network machines. This

software layer hides the hardware heterogeneity, causing

Journal of Telecommunication, Electronic and Computer Engineering

32 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 9 September – December 2016

transparency or invisibility of distributed computers. This

layer is called middleware, which enjoys expandability

(scalability), openness, and transparency. These enable easy

communication of stations of the network (see Section 1). In

this paper, a message-oriented middleware called MSMQ is

used. Various kinds of transparencies can be seen in this

architecture so that matrix elements can be moved from one

station to another, and the calculations are done concurrently.

Subsection A of this section provides the location, relocation

and concurrency transparencies.

II. MESSAGE ORIENTED MIDDLEWARE (MSMQ)

MSMQ is a queue-based inter-process communication

system; it was implemented by Microsoft in the Windows 95

operating system[2] and was supported in the next generation

of Windows. Its last version is included in Windows 8.

MSMQ is known as a MOM (Message Oriented

Middleware). It establishes a mechanism to integrate

communicating process into a loose (message oriented)

connection. In this method, processes make asynchronous

communication with each other. Figure 2 shows how MSMQ

works. As the figure shows, it consists of some public/ private

queues. Message structure consists of three parts: header, body

and labels [3].

Figure 2: Interprocess communication in MSMQ

A. MSMQ queue

There are three types of queues in MSMQ:

a. Private

Using this queue, applications put/read their private

messages on/from the queue. Figure 3 shows a private queue.

Figure 3: View of Private Queue

b. Public

This type of queue is considered for exchanging messages

between the system server and clients. In this model, messages

remain in the queue after reading; however, in the private

model, messages are removed from the queue after being read

by clients. Figure 4 shows a general view of the public queue.

Figure 4: Public Queue

c. Systematic

This queuing model is used for specific purposes.

i. Journal message queue: This queue is used to save all

sent messages. This option is enabled by setting the

parameter UseJournalQueue.

ii. Dead-letter message queues: This queue is used to save

the messages not delivered or their timespan has come

to an end.

iii. Transactional dead-letter message queues: This queue

is similar to the Dead-letter message queue, but it is

used for transactional messages [3]. Figure 5 shows the

view of these queues in the MSMQ menu.

Figure 5: Queues in MSMQ

B. Communications in MSMQ

a. Point-to-Point

Using this method, a message is sent to a queue and read by

a recipient only: It is a one-to-one communication.

Figure 6: The point-to-point communication

As shown in Figure 6, Client1 sends a message to the queue

and Client2 takes it and puts an ACK in the queue. This

method represents a point-to-point connection where sender

and the message receiver can remove message from the queue

at any time.

b. One-to-many

In this method, each message is put in queue under a Topic

so that clients can access the messages according to topics.

The message sender and receiver are called publisher and

subscriber respectively (Figure 7). As shown in Figure 7, the

creator locates a creative message in the Topic, and Client2

and Client3 refer to the topic client and receive them in order

A Distributed Method for Multiplication of Large Matrices using MSMQ Middleware

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 9 September – December 2016 33

to use them. In this method, publishers and subscribers are

interdependent in terms of time. A client can consume the

message if it has been located on the topic after being

subscribed and has been on the Topic at the time of creating

active message and the subscriber.

Figure 7: One-to-many communication

III. RELATED WORKS

In 1988, Walter and Tichy [4] considered six types of

algorithms for matrix multiplication using a network

environment. To make a link between the computers, a

particular model and pattern was used so that calculation and

distribution of results were done faster. The results showed

better performance and higher speed in matrix multiplication

over a single computer. The problem with their pattern was

that the high complexity of sending and receiving messages.

In 2000, Bymant and his colleagues [5] tested the operation of

matrix multiplication using heterogeneous environments. They

aimed to carry out matrix multiplication using network and

individual system. Using a particular combination, they

divided the matrix into different parts and then performed the

matrix multiplication using a local computer and the network

environment. The proposed method had some favourable

performances and reduced the time of multiplication by 16%.

Following this work, in 2009, Cotton et al. [6] used a

distributed system for matrix multiplication and applied Feed

Forward Operation and Back Propagation using Neural

Networks. They produced the primary neurons in the local

system and computed the input, middle, and final layers using

a distributed system. Due to the performance of their method,

the speed of Neural Network outputs was increased.

There is a big disadvantage when making communication

between computers, using a network system without a

middleware. Assume that one of stations: (1) faces a problem

in receiving a message, (2) crashes when a message reaches it

crashes, or (3) the message is lost for the network

disconnection. Accordingly, the elements of the matrix

multiplication are missed and the entire multiplication would

be suspended. However, the distributed systems using queue-

based middleware, such as the MSMQ has the ability to

resolve this big disadvantage as follows:

If any of the system stations encounters a problem, the

message, including data matrix will be in the destination or

departure queue and is delivered to the destination after

resolving the problem. Another option is using a distributed

system whose stations enjoy multi-core CPU.

In 2014, Ismail et al. [7] used a simple and efficient

algorithm called SPC3 PM using multi-core systems to matrix

multiplication; it took shorter running time over standard

parallel processing. They considered the multiplication of

matrices in different sizes from 100 * 100 to 10,000 to 10,000

using 24 cores. All the multiplications showed improvement in

the performance. The multiplication time of a 10000*10000

matrix was 6.80, 13.22, 9.19 and 23.75 using 4, 8, 12 and 24

cores respectively.

In a survey conducted by Yang Hong-Yan [8], the

performance of using the cache memory in matrix

multiplication on multi-core processors has been investigated.

The matrix multiplication has been studied in two ways: using

(1) a multi-core computer with shared cache memory, and (2)

a set of multicore computers with non-shared memory, which

are connected to each other as a cluster. Experiments were

conducted using 10 computers with matrices of variable

lengths. The research findings by [8] showed the performance

of the network computers with non-shared cache memory is

better than multi-core computers with shared memory as the

RAM and CPU usage were reduced by 93% percent.

Compared to the first method, the second method enjoys

speed and efficiency improvement; however, because all

computations were done using a single computer, it is possible

that the computer runs low on available memory. Although a

network environment with multi-core systems has been used,

similar to [4,5,6], the entire multiplication will be suspended if

a portion of the system encounters a problem. As a whole, due

to the nature of a network, it may loss in delivering messages.

These problems motivate us to propose a method with less

cost and higher security and efficiency.

IV. PROPOSED METHOD

Multiplication of big matrices is one of the commonly used

methods in mathematics, quantum physics, statistics,

accounting and many others. However, multiplication of big

matrices is a concern because it takes too much time as

solutions are using a network structure or parallel algorithms.

As mentioned in Section III, losing messages is a matter of

concern; accordingly, we try to deal with it. Compared with

the parallel architecture and the network, the increased

efficiency and less time consumption is an advantage of using

MSMQ technology to distribute messages. This technology is

available by Microsoft Windows and it is simple to

implement. The method presented in this article includes six

stages as follows:

 Breaking matrices to smaller ones;

 Sending Matrices to MSMQ;

 Sending matrices to clients through MSMQ;

 Performing matrix multiplication by each client;

 Sending the Matrix obtained from MSMQ to clients;

and

 Getting Results from MSMQ and integrating them to a

matrix to produce the final matrix.

A. Splitting Matrix

For multiplication of 2 matrices, say A and B, matrix A is

split (horizontally or vertically) into n matrices, named A1 to

Journal of Telecommunication, Electronic and Computer Engineering

34 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 9 September – December 2016

An (Figure 8).

Figure 8: Matrix division

In case of horizontal split, the multiplication is carried out

by multiplying each row of the matrix by a column of matrix

B and in case of vertical split, the multiplication is done by

multiplying each column of the matrix by a row of B. In this

paper, we use the horizontal division.

B. Sending Matrix to MSMQ

Each of the matrices A1 to An along with matrix B is sent to

the MSMQ management system as a portion of the entire

multiplication operation.

 For i = 1 to n

 Send row i of A to MSMQ Manager

 Send Matrix B to MSMQ Manager

MSMQ management includes 2 public queues called Result

and Matrix. The matrix queue holds A1, B to An, B and the

result queue holds the received results from existing

computers in the distributed system.

C. Sending matrices to the clients

At this stage, A1, B to An, B are sent from the matrix queues

to the current computers. In each computer, there is a MAT for

holding the sent data (Figure 9).

Figure 9: The quality of sending information to the client.

We must create a message to send the information to

MSMQ. The message sent from the server to client and vice

versa should be in such a way that the matrix multiplication

operation is broken into fragments, and the final summary is

simplified by each client or a server. For this reason, we used

a XML structure to create the message including a head and a

body: Using such structure to send messages is a part of our

innovation. To build the structure, a matrix is converted to a

string, and a separator character is used between the matrix

elements. Similarly, a separator character is used between the

matrices. The created string constitutes the message body. In

the message head, there are parameters m (the number of

rows), n (the number of columns of the matrix A1), x (the

number of rows) and y (the number of columns of the matrix

B) Figure 10 shows the message structure.

Figure 10:The sent structure in the proposed method.

The code for the generation of the message structure in the

form of a string is:

Message.Head = m concat. n concat. x concat. y

For i = 1 to m {

 For j = 1 to n {

 Message.Bodyconcat with A[i,j]

 Message.Bodyconcat with “;”

 {

 }

Message.Bodyconcat with “@”

 For i = 1 to x {

 For j = 1 to y {

 Message.Bodyconcat with B[i,j]

 Message.Bodyconcat with “;”

 {

 }

Send Message to Client [i]

Variables m, n, x and y are converted to string and are

separated by a dot. They are joined together as a string and

stored in the message header. In the message body, elements

of matrix Ai are arranged in tandem with character ';' between

them and character '@' at the end. Similar to matrix Ai, matrix

B is constructed. Finally, the string is stored in the message

body and sent to the client.

D. Multiplication in client side
There is a queue in each system station named MAT for

storing messages from MSMQ. In each station, there is a time-

setting, which controls the queue contents every 1 millisecond.

And if it is compatible with the data set, the message is read

from the queue and matrices A and B are constructed.

Multiplication of matrices A and B is calculated sequentially

as follows, and the result is stored in matrix C.

For i=1 to m-1

 For j=1 to n-1
 For k=1 to y-1

 C[i, j]=C[i, j] + A[i, k]*B[k, j]

E. Sending the resultant matrix

Matrix C is sent to MSMQ by the client. This matrix is

constructed in the form of string (like the previous stage) and

the matrix elements are separated by separating characters. In

the message header, the client number is placed so that it will

be identified by the server. The matrix elements are sent in the

A Distributed Method for Multiplication of Large Matrices using MSMQ Middleware

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 9 September – December 2016 35

XML structure and are placed in the result Queue. Figure 11

shows how respond message is sent to the MSMQ

management.

Figure 11: Sending result matrix to the MSMQ Manger

F. Obtaining and Integrating Results

The MSMQ system consists of a time scheduler server for

obtaining messages from the result Queue of MSMQ

Manager. It identifies the corresponding client response (i.e.

the production element) based on the client number in the

message header. Then, the production element is laid to the

corresponding element in the production matrix. Integration of

the matrices will be carried out leading to product matrix,

when all clients send their responses. The time order of

multiplication of two matrices on local computers is O(n2)

where n is the number of rows/columns of the first/second

matrix. Now, we deal with the time order of multiplication of

two matrices using the proposed method:

 Time of splitting matrix (Tm),

 Send time of the split section to a client (Ts),

 Computing time used by a client Tc,

 Send time of response from a client to the server (Tr),

 Integration of responses (product elements) in by the

MSMSQ server and generation of the final response

(result product matrix), Tf.

The time order of sending and receiving messages in the

form of strings, is O(n). The integration and split operations

are accomplished in a form of string and the time order is

O(n). Because matrices are split into N parts, the time order of

multiplication in the client side is O(
𝑛3

𝑁
) where n and N are the

number of matrix rows and clients respectively. According to

this method, the time order is TW, as shown in Equation (1):

Tm = Ts = Tr = Tf = O(n)

Tc = O(
𝑛3

𝑁
)

Tw = O(
𝑛3

𝑁
) + O(n)

(1)

V. EVALUATION OF THE PROPOSED METHOD

The proposed method was implemented in the Microsoft

Visual Studio environment in the C# language, consisting of 4

clients. By installing a server on a system workstation, the

public queue was created on the workstation so that the

distribution process of matrices elements could be carried out.

Then, clients were linked to each other through switches and

hubs. Afterwards, we added the clients to the system domain

and the IPs were set up. In the next step, middleware MSMQ

was enabled in the server and clients.

We first obtained the time needed for matrices

multiplication using just one workstation; then the

multiplication operations were distributed using four

workstations (clients). We considered the proposed method on

a heterogeneous distributed environment using four

workstations with different platforms. Table 1 shows the

features of our distributed system workstations.

Table 1
Workstations of distributed system

Client CPU RAM OS

1Pc 2.4 GHz 2 GB Windows 8

2Pc 2.8 GHz 2 GB Windows 7

3Pc 3.2 GHz 4 GB Windows 8

4Pc 2.4 GHz 1 GB Windows XP

Table 2 shows the time of multiplication of two matrices

with different dimensions using (1) a single system and (2) the

distributed system. Having obtained the results on four clients,

we expanded the system; this led to a decrease of

multiplication. As Table 2 shows, when the multiplication is

carried out for two matrices with low size, the single system

performance is better than the distributed one. This is because

of the expense imposed by the data transmission in the

network. However, the distributed system performance is

getting better than a single system when matrices become

larger. Moreover, a single system does not have the ability of

multiplication of very large matrices; in this case, we must

distribute operations of multiplication among workstations.

Figure 12 shows the performance of distribution system for

matrix multiplication with different dimensions rather than a

single computer.

Table 2

The time of computing matrices multiplication on a computer and on a

distributed system

Matrices

size

Multiplication time (milliseconds)

Single

Distributed System

W1 W2 W3 W4 Total

100 50 339 433 318 610 722

200 423 820 783 712 998 1058

300 1402 2200 2199 2185 2369 2590

400 3141 2531 2439 2398 2673 2945

500 7693 4119 4374 4021 4030 4833

600 13219 8543 9405 8195 8201 10122

700 21548 12569 14802 11986 12007 16121

800 34053 15634 14143 13690 16033 17180

900 48911 19654 18303 18452 23705 25303

1000 66789 30221 28413 27870 33129 35006

1100 107587 36112 35897 34998 44924 47585

Journal of Telecommunication, Electronic and Computer Engineering

36 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 9 September – December 2016

Figure 12: Distributed system performance for multiplication of matricies

with different dimensions

Figure 13 shows performance timeline of each existing

computer in the distributed system for matrix multiplication.

VI. PERFORMANCE WITH AN INCREASE OF CLIENTS

Table 3 shows the calculation time of matrix multiplication

when the number of clients increases. As a whole, when a

distributed system with the MSMQ middleware was used to

multiply large matrices, the results indicated that using the

proposed method reduces the time of multiplying large

matrices suitably. We observed that our method enjoys more

performance over the single workstation when we use

matrices with high dimension. Equation (1) shows how time

complexity reduced with the increase in the number of clients.

𝑇𝑤 = 𝑂 (
𝑛3

𝑁
) + 𝑂(𝑛), 𝑁 ≈ 𝑛

↓

𝑇𝑤 = 𝑂(𝑛2) + 𝑂(𝑛)

(2)

Table 3

The multiplication time in terms of the number of clients of a distributed

system

Matrix size

Multiplication time

(in milliseconds)

4Ws 8Ws 16Ws 20Ws

100 722 810 892 903

200 1058 1050 1104 1223

300 2590 2358 2720 2915

400 2945 2703 3068 3214

500 4833 4171 4823 5148

600 10122 9123 10231 11531

700 16121 14983 16003 16841

800 17180 15200 15340 17039

900 25303 22391 21830 21966

1000 35006 32142 30963 30847

1100 47585 44189 42667 40952

Figure 13: The timeline diagram of the performance of each computer in a distributed system for matrix multiplication.

A Distributed Method for Multiplication of Large Matrices using MSMQ Middleware

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 9 September – December 2016 37

Figure 14: Charts for matrix multiplication distributed system with varying client displays.

VII. CONCLUSIONS AND FUTURE WORK

We used a distributed system with the MSMQ middleware

to multiply large matrices. The results indicated that using the

proposed method reduces time of multiplying large matrices.

By increasing the dimensions of matrices, performance of our

proposed method increases over a single workstation. This is

because when the matrix size is getting higher, the time order

O(n3) increases. By increasing the number of clients, the

multiplication time is reduced. As the value of N (the number

of clients) closes to the value of n (the number of matrix

rows/columns), the time complexity of multiplication is

reduced. Therefore, as the matrix gets larger, an increase in the

number of clients will typically cause a better performance of

our method. For future work, it is suggested that the various

algorithms of matrix multiplication are implemented using our

method and their performance is compared to a single

workstation.

REFERENCES

[1] van Steen M, Tanenbaum AS, A brief introduction to distributed

systems, Computing, 2016, 98, pp. 967-1009.
[2] Microsoft, Message Queuing Overview, https://msdn.microsoft.com/en-

us/library/ms703216(v=vs.85).aspx, Access date: November, 12, 2016.
[3] Redkar A, Rabold K, Costall R, Boyd S, Walzer C, Pro MSMQ:

Microsoft Message Queue Programming: Apress, 2004.
[4] Tichy WF, Parallel matrix multiplication on the connection machine,

International Journal of High Speed Computing, 1989, 1, pp. 247-262.
[5] Beaumont O, Boudet V, Rastello F, Robert Y. Matrix-matrix

multiplication on heterogeneous platforms. International Conference on

Parallel Processing, 2000, pp. 289-298.
[6] Kattan A, Abdullah R, Salam RA. Reducing Feed-Forward Neural

Network Processing Time Utilizing Matrix Multiplication Algorithms on

Heterogeneous Distributed Systems. First International Conference on
Computational Intelligence, Communication Systems and Networks,

2009, pp. 431-435.
[7] Ismail MA, Mirza S, Altaf T, Concurrent matrix multiplication on multi-

core processors, International Journal of Computer Science and Security

(IJCSS), 2011, 5, pp. 208.
[8] Yan Y, Kemp J, Tian X, Malik AM, Chapman B. Performance and

Power Characteristics of Matrix Multiplication Algorithms on Multicore
and Shared Memory Machines. High Performance Computing,

Networking, Storage and Analysis (SCC), 2012 SC Companion:, 2012,

pp. 626-632.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4 8 16 20

T
im

e(
m

il
is

ec
o
n

d
)

Number of Clients

100*100

200*200

300*300

400*400

500*500

600*600

700*700

800*800

900*900

1000*1000

1100*1100

Journal of Telecommunication, Electronic and Computer Engineering

38 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 9 September – December 2016

APPENDIX

This is a view of our application environment for splitting matrices and sending split sections to MSMQ management in the

server side. To consider the source code, refer to the http://www.conf.natanziau.ir/file/upload/Appendix.pdf.

