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 In modern networking, the efficient prioritization and classification of network traffic is paramount 

to ensure optimal network performance and optimization. This study presents an approach to 

enhance intelligent packet forwarding priority classification on Differentiated Services Code Point 

(DSCP), leveraging classifiers from machine learning algorithms for Deep Packet Inspection 

(DPI). The DSCP resides inside the Differentiated Services (DS) field of the Internet Protocol (IP) 

packet header in an OSI or TCP/IP model, which prioritizes different types of packets for 

forwarding to the router based on the attached payload. Similarly, DPI plays a crucial role in 

network management, enabling the identification of applications, services, and potential threats 

within the network traffic. In this study, various machine learning models, namely Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Logistic 

Regression and ensemble models such as, XGBoost, AdaBoost were used to harness the 

capabilities of network packet classification based on DSCP. Detailed experimentation was 

conducted to evaluate their performance. The results show that AdaBoost demonstrated superior 

performance with an accuracy of around 89.91%, showcasing its ability to adapt the evolving 

network configurations and conditions while maintaining high classification accuracy on the IP 

packets. The random forest model also performed well, achieving an accuracy of 89.41%, making 

it a strong candidate for the DSCP classification in network transmission. This study has the 

potential to significantly improve how networks manage traffic, prioritize packets, and secure 

complex and dynamic network environments. 

  

Index Terms: 

Deep Packet Inspection (DPI)  

Differentiated Services Code -  

Point (DSCP)  

Quality of Service (QoS)  

Network Traffic Classification  

Intelligent Packet Classification 

 

 

I. INTRODUCTION 

Deep packet inspection (DPI) is a network security 

mechanism which examines the header and content of an IP 

packet as they travel across a network. It is used in modern 

network management to inspect packet headers and contents 

in detail, enabling the monitoring transmission within a 

network, identification and mitigation of malicious traffic, 

enforcement of security policies and gaining insight into 

network activities. DPI allows network administrators to 

monitor the network traffic flow and take necessary measures 

to prevent unusual activities inside the network, such as 

triggering alerts, blocking packets, re-routing traffic, and 

managing logs [1]. It is a fundamental technology for 

establishing baseline application behavior such as, analyzing 

network usage, preventing malicious code, detecting 

eavesdropping, enforcing censorship, and troubleshooting 

network performance issues. It functions as a packet 

inspection and filtering mechanism within the Open System 

Interconnected (OSI) application layer, acting as a part of the 

network firewall. The DPI evaluates packets header and 

payloads based on specific rules set by network 

administrators [2]. Furthermore, in the context of DPI, the 

concept of Quality of Service (QoS) is essential in managing 

traffic priority among various network protocols, ensuring a 

certain level of performance across different types of traffic. 

Similar to how highways prioritizes emergency vehicles for 

speedy response, QoS prioritizes critical traffic over less 

urgent traffic, providing a smooth and responsive experience 

for users. This is particularly important for real-time 

applications like  VoIP, RTMP, HLS, DASH, as it helps to 

reduce congestion and latency. Additionally, a key element 

of QoS is the Differentiated Service Code Point (DSCP), 

which manages IP packet priority. DSCP is a 6-bit field 

(ranging from 0 – 63) within the IP header, specifically inside 

the Differentiated Services (DiffServ) of IPv6. It acts as a 

traffic marker, classifying packets based on the desired QoS 

treatment. 
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In addition, encryption is widely recognized as a crucial 

measure to ensure security and privacy in the network 

transmission. According to [3] there is an increasing trend in 

the use of encryption, with around 85% of global network 

traffic being encrypted. There are several encryption tools 

such as Transport Layer Security (TLS), Secure Socket Layer 

(SSL), Secure Shell Protocol (SSH), Internet Protocol 

Security (IPsec), and Pretty Good Privacy (PGP), having a 

leverage for both ymmetric and asymmetric methods of 

encryption using Advance Encryption Standard (AES) and 

RSA algorithms. The encryption provides a deep-level 

protection for application delivery and network management 

[4]. Similarly, it safeguards critical applications that handle 

sensitive information, which are susceptible to interception 

through packet sniffing. This security measure ensures that 

data remains confidential and protected from incoming cyber-

attacks. Additionally, encryption offers a highly secure 

communication channel for individuals and companies, 

keeping data obscure and safe [5]. However, encryption also 

poses various challenges related to the visibility of 

information during network monitoring. These challenges 

can create bottleneck in identifying cyberattacks and 

implementing network traffic management policies, such as 

routing, application caching, content optimization and many 

others [6].  

In earlier days, network operators and administrators 

deployed DPI engines and related network traffic 

management tools to monitor the network traffic processes 

[7]. However, with the increasing use of advanced 

encryption, traditional DPI tools struggle to meet the latest 

network traffic needs and requirements. This has resulted in 

the necessity for more advanced DPI methods capable of 

processing encrypted traffic using machine learning (ML) 

algorithms [8]. Similarly, machine learning (ML) is built on 

the concept of features, which are parameters within a 

dataset. By using ML algorithms, a machine can learn from a 

given set of data to produce intelligent outputs [9]. The 

primary purpose of using ML technology is to develop the 

capacity to analyze, predict and gain insights for the effective 

classification of network packets [10]. Moreover, integrating 

ML with DPI can significantly enhance network packet 

classification and traffic management domain, helping to 

overcome issues related to network traffic congestion, 

latency, and security.  

In this proposed study, a hybrid model that includes both 

the ML and DPI is integrated. Specifically, the DPI is applied 

to the IP header field known as Differentiated Services Code 

Point (DSCP) within the header section of Differentiated 

Services (DiffServ). The proposed work addresses the four 

Per-Hop Behavior (PHB) levels of the DSCP packet 

forwarding, which are the Expediated Forwarding (EF), 

Assured Forwarding (AF), and Default Forwarding (DF). 

These are classified based on ML techniques to optimize how 

routers and switches handle IP packet priority.  

II. TRAFFIC CLASSIFICATION, DIFFERENTIATED 

SERVICES AND QUALITY OF SERVICE 

The Quality of Service (QoS) is a network traffic 

management mechanism designed to ensure optimal 

performance for critical applications, particularly those with 

limited network resource capacity [11]. It enables the network 

operators and administrators to optimize overall network 

traffic by prioritizing specific high-performance, resource-

intensive applications [12]. QoS is applied to IP networks that 

carry traffic for computationally intensive applications such 

as online gaming, streaming media, video conferencing, 

internet television, Voice over IP (VoIP) [13].  

Differentiated Services (DiffServ) is an extension of QoS 

in modern IP networks, which assigns priorities to each IP 

packet based on the network resource requirements [14]. It 

uses the DSCP from the DiffServ within the IP packet header 

and utilizes a class-based mechanism. This classification 

marks packets based on their origin, such as host devices or 

network management tools and assigns them to specific tools 

[15]. DiffServ operates on the principles of per-hob behavior 

(PHB), sorting each packet into a limited number of QoS 

marked classes [16]. Routers are then configured to forward 

traffic according to the rules set for the PHBs, ensuring higher 

priority packets are transmitted efficiently. This reduces 

packet loss, jitter, and bandwidth issues by prioritizing 

critical packets [17].  

The DSCP resides within DiffServ at the network layer of 

the OSI model, which encapsulates the data into the form of 

packets [18]. The DSCP was earlier replaced with Type of 

Service (ToS) header field from the IPv4 packet header and 

replace with Traffic Class in the latest IPv6 packet header 

[19]. Once the network traffic is marked with DSCP, it is 

considered for classification and priority conditioning by 

network devices, such as routers and switches. Incoming 

packets are inspected with different parameters such as 

source address, destination address, and protocol type, which 

are assigned with specific traffic classes to individual packets 

[20]. However, a traffic classifier within the receiving router 

can consider, ignore, or override these markings. Network 

administrators can also apply policies, like rate limiting, 

traffic compliance, and bandwidth management [21].  

Similarly, the per-hop behavior (PHB) in a packet is 

determined by the DiffServ inside the IP header [22]. The 

DiffServ field consists of a 6-bit of DSCP value, allowing for 

up to 64 different classes, each represented by a  DSCP value, 

which is identical in number [23]. However, in real-world 

environments, PHB typically falls into the following 

categories: the default forwarding (DF), expediated 

forwarding (EF), and assured forwarding (AF) [24]. DF 

implies that the router will make its best effort to forward the 

packet. However, there is a significant risk of packet dropping 

or higher loss of packet in DF [25]. Expediated forwarding 

(EF) is dedicated to minimizing packet dropping risk and 

ensuring low latency in traffic forwarding by the routers [26]. 

Assured forwarding (AF) provides a guarantee that the packet 

will be forwarded with high priority, reducing the risk of 

packet dropping and ensuring low latency [27]. AF is further 

divided into three classes of AF behavior group category: 

low, medium, and high [28]. The detailed orientation of PHB 

categories is shown in Figure 1. 
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Figure 1. Per-Hop Behavior and Differentiated Service Code Point in OSI layer model 

III. METHODOLOGY 

The research design comprises of three stages, which 

includes dataset development, data-pre-processing and model 

development as shown in the Figure 2. Following the initial 

stages of dataset development, the research delves into a 

comprehensive exploration of the collected data. The dataset 

reflects real-time network interactions, which were 

meticulously gathered from a dynamic network environment 

using widely recognized network sniffing tool, notably 

Wireshark [29]. The captured data, initially in PCAP format 

and stored in binaries, was converted into a more accessible 

CSV format using built-in tools from Wireshark. This 

resulted in an extensive dataset comprising 1,16,315 rows of 

data. To enhance the richness and versatility of the dataset, an 

additional layer of refinement was applied through the 

utilization of various data-processing steps. The refined 

dataset encapsulates a myriad of essential IP-related fields, 

each contributing valuable insights into the intricacies of 

network activities. Table 1 provides an overview of the 

included IP fields, showcasing the depth and breadth of 

information available for analysis and modeling. This 

meticulous approach for dataset development and refinement 

lay a solid foundation for subsequent stages, ensuring the data 

used in the research is not only extensive, but also well-

prepared for the challenges of model development and 

analysis. 

The subsequent stage involves data preprocessing, which is 

a critical phase aimed at refining and enhancing the quality of 

gathered information. This involves various measures of 

implementation, such as handling of missing values and the 

extracting pertinent features respectively. Notably, the 

absence of missing values highlights the robustness of the 

dataset, signifying a meticulous data collection process and 

contributing to the overall reliability of the research. With 

missing values addressed, the focus shifted to feature 

extraction, a process pivotal in distilling the relevant 

information required for model development. 

Table 1 
IP Header Field in the dataset 

 

IPv4 IPv6 

Version Version 

IHL (Internet Header Length) Traffic Class 

Type of Service (ToS) Flow Label 

Total Length Payload Length 

Identification Next Header 

Flags Hop Limit 

Time to Live Source Address 

Protocol Destination Address 

Header Checksum Payload  

Source Address  

Destination Address  

Payload  

 

Two key features were extracted during this phase, namely 

the protocols and Differentiated Services Code Point classes 

(DSCP). The former provides insights into the 

communication protocols associated with the network packet, 

while the latter categorizes the packets based on their DSCP 

classes. These extracted features serve as the building blocks 

for the subsequent modeling and analysis, offering a concise 

yet comprehensive representation of the dataset. To provide 

a clear understanding of the refined dataset and its extracted 

features, Table 2 presents a detailed list of protocols 

alongside their respective counts. This enumeration offers a 

valuable insight into the prevalence of each protocol within 

the dataset, laying the groundwork for further analysis. 

Simultaneously, Table 3 provides an analogous breakdown 

for DSCP classes, showcasing the distribution and frequency 

of different DSCP classifications within the dataset. 

In the model development phase, the research harnessed 

the power of six distinct machine learning algorithms, each 

carefully selected for its unique strengths and capability in the 

context of DSCP classification. The ensemble of algorithms 

comprised of Support Vector Machine (SVM), Logistic 
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Regression, Decision Tree, K-Nearest Neighbors (KNN), 

XGBoost and AdaBoost respectively.  
 

This diverse selection enables a comprehensive exploration 

of various modeling approaches, ensuring a thorough 

evaluation of their effectiveness in classifying DSCP within 

the network packet and transmission flow. 

The SVM is a powerful algorithm known for its capability 

to handle both linear and non-linear classification tasks [30]. 

In the context of DSCP classification, SVM was employed to 

create a decision boundary that effectively separates different 

DSCP classes. Its ability to handle high-dimensional data and 

uncover complex relationships made it invaluable for 

discerning patterns within the dataset. Further, logistic 

regression, commonly used for binary classification tasks, 

was adapted to handle multiple classes (multinomial 

approach) for DSCP classification. The logistic regression 

algorithm models the probability that a packet belongs to a 

particular DSCP class based on its features. It uses the logistic 

function to transform the output into a probability distribution 

across different classes [31]. Its simplicity, interpretability, 

and efficiency make it a valuable addition to the suite of 

machine learning algorithms, providing insights into the 

likelihood of a packet belonging to a specific DSCP class 

based on individual features.  

K-Nearest Neighbors (KNN) is a versatile algorithm which 

classifies data points based on the majority class among their 

K-Nearest Neighbors [32]. In DSCP classification, KNN was 

applied to identify similarities between network packets, 

assigning a DSCP class based on the classes of neighboring 

packets. This approach leveraged spatial relationships within 

the dataset. Extreme Gradient Boosting (XGB) is an 

ensemble learning model employed to build a strong 

predictive model by combining multiple weak models [33]. 

In DSCP classification, XGB excelled in handling complex 

relationships within the data, providing a robust and accurate 

model by boosting the performance of individual weak 

learners. The random forest creates an ensemble of decision 

trees and aggregates their predictions to improve the overall 

accuracy and generalization [34]. In the context of DSCP 

classification, it excelled at handling complex interactions 

among features and mitigate the issue of overfitting. It 

operates by constructing multiple decision trees during 

training and outputs the model of the classes predicted by the 

individual trees. Each decision tree is constructed using a 

random subset of the dataset and a random subset of features, 

introducing diversity among the constituent trees. Lastly, the 

AdaBoost focuses on the combination of predictions of 

multiple weak learners to form a strong classifier [35]. In the 

DSCP classification, it iteratively adjusted the weights of 

misclassified instances, emphasizing challenging cases and 

enhancing the overall model’s performance. Its adaptability 

and ability to handle diverse datasets made it valuable 

inclusion in the model ensemble. 

 
Table 2  

List of Protocols and their counts in the dataset 

Protocols Count 

QUIC 84187 

TCP 17947 

TLSv1.3 8954 

DNS 1272 

UDP 1030 

SRTP 875 

TLSv1.2 768 

ICMPv6 286 

SRTCP 213 

MDNS 192 

SSDP 164 

ARP 140 

IGMPv3 61 

DTLSv1.2 50 

ICMP 43 

STUN 38 

LLMNR 30 

HTTP 24 

OCSP 12 

DHCP 9 

DHCPv6 8 

TLSv1 4 

SSLv2 4 

IGMPv2 4 

 

 

Figure 2. Packet Classification Methodology 
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Table 3  
List of DSCP classes and their counts in the dataset 

 

DSCP 

Classes 

 
Priority 

 

Count 

CS0 Low 93371 

CS4 Medium 12713 

CS2 Medium 7031 

AF31 High 1620 

AF41 High 1327 

CS3 Medium 103 

CS6 Medium 10 

IV. EXPERIMENTAL ANALYSIS AND RESULT 

The experimental analysis and results phase involves 

evaluating the accuracy and classification performance based 

on positive and negative values. In the context of DSCP 

classification, the performance of various classification 

algorithms such as, SVM, Decision Tree, Random Forest, 

Logistic Regression, KNN, XGBoost and AdaBoost was 

evaluated based on their confusion matrices. The confusion 

matrix provides a detailed insight into the model’s 

classification performance by breaking down predictions into 

true positives (TP), false positives (FP), true negatives (TN) 

and false negatives (FN). Table 4 summarizes the model 

analysis based on accuracy, precision and recall percentages 

respectively. 

The classification performance of these algorithms in the 

context of DSCP was thoroughly analyzed using metrics, 

such as accuracy, precision, and recall with a detail analysis 

of their confusion matrices. To begin with the SVM model, it 

achieved accuracy, precision, and recall of 88.59%. The 

confusion matrix highlighted that 88.59% of instances 

belonging to the DSCP class were correctly classified (TP), 

indicating a well-balanced performance in terms of both 

precision and recall. Only 11.41% of instances were 

misclassified (FP and FN), demonstrating the model’s ability 

to make accurate predictions. Furthermore, the decision tree 

model exhibited accuracy, precision, and recall of 89.25%. 

The confusion matrix revealed that 89.25% of DSCP 

instances were accurately identified, showcasing a consistent 

and well-balanced classification performance. The model 

demonstrated its reliability across different aspects of 

classification, maintaining steady precision and recall values. 

Moreover, the random forest model demonstrated accuracy, 

precision, and recall of 89.41%. The confusion matrix 

showed that a significant majority of instances were correctly 

classified, emphasizing the effectiveness of the ensemble 

approach in reducing misclassifications. This highlighted the 

robustness of the random forest model in DSCP 

classification. Additionally, the logistic regression model 

achieved accuracy, precision, and recall of 88.89%. The 

confusion matrix showed a well-balanced classification 

performance, with nearly 89.89% of DSCP instances 

correctly identified. The model demonstrated consistency in 

both precision and recall, affirming its reliability in predicting 

DSCP classes accurately. The confusion matrices 

visualization is shown in Figure 3 and 4 respectively. The 

KNN model demonstrated competitive performance with an 

accuracy, precision, and recall of 89.23%. The confusion 

matrix emphasized the model’s effectiveness in identifying a 

large number of DSCP instances, contributing to its overall 

accuracy. The well-aligned precision and recall values 

indicated a balanced trade-off between false positives and 

false negatives. Similarly, the XGBoost model exhibited 

accuracy, precision, and recall of 89.69%, emphasizing its 

robust performance in DSCP classification.  

 
Table 4  

Summary of Model’s Classification Performance and Analysis 

 

        
Model 

           

 
Accuracy  

(%) 

 
Precision 

(%) 

 
Recall 

(%) 

SVM 88.59  88.59 88.59 

Decision Tree 89.25 89.25 89.25 

Random Forest 89.41 89.41 89.41 

Logistic Regression 88.89 88.89 88.89 

KNN 89.23 89.23 89.23 

XGBoost 89.69 89.69 89.69 

AdaBoost 89.91 89.91 89.91 

 

 

 
Figure 3 (a). Visuals of SVM Confusion Matrix 

 

 
Figure 3 (b). Visuals of Decision Tree Confusion Matrix 

 



Journal of Telecommunication, Electronic and Computer Engineering 

10 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 16 No. 2  

 
Figure 4 (a). Visuals of Random Forest Confusion Matrix 

 
 Figure 4 (b). Visuals of Logistic Regression Confusion Matrix 

 
Figure 5 (a). Visuals of KNN Confusion Matrix 

The confusion matrix highlighted a high proportion of true 

positive predictions, showcasing its effectiveness in DSCP 

classification. The model maintained a balance between 

precision and recall, maintaining its reliability. Lastly, the 

AdaBoost model has achieved an accuracy, precision, and 

recall of 89.91%. The confusion matrix demonstrated the 

model’s excellence in correctly identifying DSCP instances, 

with a high proportion of true positives.  

 
Figure 5 (b). Visuals of XGBoost Confusion Matrix 

 
Figure 6. Visualization of AdaBoost Confusion Matrix 

 

The AdaBoost’s ensemble learning approach contributed 

to its superior performance in DSCP classification, 

emphasizing its potential as a powerful classifier in this 

context. The confusion matrices visualization is shown in 

Figure 5 and 6 respectively. In summary, each algorithm 

exhibited strong performance in DSCP classification, with 

accuracy, precision, and recall metrics providing a 

comprehensive evaluation of their capabilities. The detailed 

examination of confusion matrices further enriched the 

understanding of the strengths and generalization capabilities 

of each algorithm in the specific context of DSCP 

classification. 

V. CONCLUSION 

In conclusion, this study delved into the realm of Deep 

Packet Inspection (DPI) within network management, 

focusing on the classification of Differentiated Services Code 

Point (DSCP) to enhance Quality of Service (QoS). The 

introduction provides a comprehensive overview of DPI’s 

role in network security, emphasizing its significance in 

monitoring and mitigating malicious traffic, enforcing 

security policies, and gaining insights into network activities. 

The motivation for incorporating machine learning (ML) 

algorithms alongside DPI addressed the limitations of 

traditional DPI tools in handling network traffic. The 

proposed hybrid model integrating ML and DPI and 

specifically applied to DSCP in IP headers, offered a novel 
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approach to addressing challenges associated with traffic 

classification, congestion, latency, and security in modern 

network environments. The methodology section outlined a 

detailed research design, encompassing stages such as dataset 

development, data pre-processing, and model development. 

The inclusion of six distinct ML algorithms, including SVM, 

Logistic Regression, Decision Tree, KNN, XGBoost, and 

AdaBoost, demonstrated a comprehensive exploration of 

modeling approaches. Moreover, the experimental analysis 

and results provided a detailed evaluation of the performance 

of each algorithm in DSCP classification, showcasing higher 

accuracy, precision, and recall values. The confusion 

matrices offered a granular understanding of the model’s 

capabilities, emphasizing their effectiveness in correctly 

classifying DSCP instances. The visualization of confusion 

matrices further enriched the analysis, providing a detailed 

insight into true positives, false positives, true negatives, and 

false negatives. The SVM model demonstrated robustness 

with an accuracy of 88.59% and a well-balanced precision-

recall trade-off, accurately classifying 88.59% of DSCP 

instances. Similarly, the decision tree and random forest 

models achieved accuracies of 89.25% and 89.41% 

respectively, resulting in reliable performance and effective 

reduction of misclassifications. Furthermore, the logistic 

regression model achieved an accuracy of 88.89% with a 

well-balanced classification performance. This 

comprehensive analysis contributes to the advancement of 

DPI applications in network management, particularly in the 

context of QoS enhancement through DSCP classification. 

The integration of ML algorithms with DPI for DSCP 

classification presents a promising avenue for improving 

network traffic management, security, and performance. In 

addition to the current findings, there are several areas where 

future research that could enhance the understanding and 

application of classification algorithms in the context of 

DSCP can be conducted. A potential area for further 

exploration is the refinement of the classifier performance 

through the optimization of hyperparameters and feature 

selection techniques. Fine-tuning the parameters of the 

models, such as kernel functions in SVM or tree depth in 

decision trees, could potentially improve classification 

accuracy and address any limitations identified in this study. 

The research findings underscore the potential of the 

proposed hybrid model in addressing contemporary 

challenges in network environments, paving the way for more 

robust and adaptive approaches to DPI and QoS optimization. 
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