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 The most pressing modern problem of using chaotic systems in practice is the development of 

multi-channel information encryption methods. To solve these problems, there is a need to develop 

multidimensional chaos generators. In this paper, novel multidimensional 7D and 8D hyperchaotic 

systems are presented. It details a technique for creating a 7D dynamic system derived from a pre-

existing 6D dynamic system. Additionally, this paper outlines the development of an 8D nonlinear 

dynamic system utilizing a memristor. An examination of innovative 7D and 8D dynamic systems 

was conducted, focusing on the determination of Lyapunov exponents, the construction of 

bifurcation diagrams, and the identification of equilibrium points along with their corresponding 

stability conditions for each system. As a result of computer modeling of 7D and 8D hyperchaotic 

systems in MATLAB-Simulink and Labview, phase portraits of numerous strange attractors were 

obtained. Finally, using Multisim software, electronic circuits for new 7D and 8D chaos generators 

were built, which demonstrated similar behavior as in the MATLAB-Simulink and LabView 

models.  

 

Index Terms: 

Nonlinear Dynamic Systems 

Chaotic Behavior 

Memristor 

Computer Simulation  

Circuit Implementation  

I. INTRODUCTION 

For many years, the scientific community has dedicated its 

efforts to examining nonlinear dynamical systems. Despite 

being governed by fixed rules or equations and considered 

deterministic, these systems display intricate, unpredictable, 

and seemingly random patterns over time. This phenomenon, 

known as deterministic chaos, is gaining prominence for its 

application in addressing diverse engineering challenges, 

notably in designing telecommunication systems [1]-[3]. In 

this context, emphasis is placed on the physical representation 

of nonlinear dynamic equations achieved by employing 

electronic circuits to devise novel chaos generators. 

One of the dynamic systems frequently investigated for its 

chaotic attributes is the Lorentz system [4], originally 

formulated to describe free convection in the atmosphere. 

Cuomo and Oppenheim [5] devised an electronic circuit to 

generate chaotic signals, utilizing the Lorentz equations as a 

foundation. Furthermore, the authors detailed a technique 

within [5] for secure information exchange. This method 

involved employing synchronized chaotic Lorentz systems 

implemented in both the transmitter and the receiver. 

Research [5] stimulated the development of electronic chaos 

generators based on various equations. The Kaplan-York 

dimension and Lyapunov exponents stand out as pivotal tools 

for characterizing the chaotic dynamics of a system [6]. In 

instances where multiple positive Lyapunov exponents are 

present, the system's dynamics showcase more intricate 

chaotic behavior, commonly referred to as hyperchaotic.  

Typically, dynamic systems with dimensions exceeding 

three manifest hyperchaotic behavior. Numerous studies have 

delved into hyperchaotic systems, each introducing distinct 

dimensions and characteristics. Vaidyanathan et al. [7] 

introduced a novel 4D hyperchaotic system lacking 

equilibrium and explored the synchronization possibilities of 

this new system. Singh et al. [8] proposed a 5D hyperchaotic 

system featuring a stable equilibrium point. Their work 

demonstrated multistability and transient chaotic behavior in 

the proposed system. Alattas et al. [9] addressed the 

synchronization of 6D hyperchaotic systems using integral-

type sliding mode control. They also presented an analog 

electronic circuit utilizing MultiSIM. Kopp et al. [10] 

developed computer models for a 6D chaotic dynamic system 

using MATLAB-Simulink and LabVIEW. They employed 

the NI MultiSim package for circuit implementation, 

proposing a secure communication scheme based on chaotic 

modulation. Laghmiri et al. [11] constructed two new 7D 

hyperchaotic systems and conducted a comprehensive study 

on the dynamics and synchronization of these systems. Kopp 

et al. [12] designed computer models for an 8D Lorentz-like 

chaotic dynamical system in Matlab-Simulink and LabView. 

They utilized the NI MultiSim package for chaos generator 

electronics and implemented the 8D hyperchaotic system on 

the Arduino Uno board. Zhu et al. [13] introduced a nine-

dimensional, eight-order chaotic system along with its 

corresponding circuit implementation. Mahmud et al. [14] 

presented a complex nonlinear hyperchaotic model, 

describing a nine-dimensional chaotic Lorentz system with 
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quaternion variables. Jianliang et al. [15] proposed a ten-

dimensional chaotic system of the ninth order, implementing 

an electronic circuit for a chaos generator. Benkouider et al. 

[16] introduced an intricate 10D hyperchaotic system of 

substantial complexity. Through the active control method, 

they successfully demonstrated synchronization between a 

set of three chaotic systems and the 10D hyperchaotic system. 

Notably, despite the intricate dynamics inherent in the new 

10D hyperchaotic system, the researchers managed to 

implement an electronic circuit with a relatively 

straightforward architecture for its realization. 

Recently, a new direction in nonlinear circuit theory has 

been actively developed: chaos generators based on 

memristors. The term “memristor” was first coined by Chua 

[17] to describe a device based on the symmetrical principle, 

in which an electric charge is coupled to a magnetic flux. 

Essentially, a memristor functions as a resistor with an analog 

memory. Over time, the term has been extended to encompass 

a broader category of memristor systems [18]. The initial 

implementation of a memristor device with a metal-

dielectric-metal structure was achieved by the HP laboratory 

[19]. A comprehensive review of memristive hyperchaotic 

systems is described in the monograph [20]. There are not 

many types of memristor-based multidimensional 

hyperchaotic systems known in the literature. Wang et al. [21] 

proposed a new 5D chaotic system with a flux-controlled 

memristor. Mezatio et al. [22] presented a 6D autonomous 

system obtained by introducing a flux-controlled memristor 

model into an existing 5D hyperchaotic autonomous system.  

Kou et al. [23] introduced an unusual 7D complex chaotic 

system combined with the cubic memristor. Unlike previous 

studies [21]-[23], we proposed a new 8D hyperchaotic system 

obtained by introducing a flux-controlled memristor model 

into a new 7D hyperchaotic system. 

The purpose of this paper is to create computer models for 

new nonlinear dynamic systems (7D and 8D) using both the 

MATLAB-Simulink environment and LabView software. To 

test new electronic circuits for chaos generators, we use the 

NI Multisim package. This package allows users to display 

chaotic dynamics through signal oscillograms and phase 

portraits of attractors. 

  

II. EQUATIONS 7D AND 8D OF NONLINEAR 

DYNAMICS 

   Recently [10], we carried out a computer simulation of a 6D 

chaotic system, describing scenarios for the emergence of a 

turbulent state in a non-uniformly rotating magnetized 

electrically conducting fluid. This model is described by 

nonlinear dynamics equations of the following forms [10]: 
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Here, the amplitudes of velocity field disturbances are 

represented by 1x  and 5x , while magnetic field disturbances 

are indicated by 4x  and 6x . Temperature field disturbances, 

on the other hand, are represented by the amplitudes 2x  and 

3x . Parameters , , , ,R b c d e  and f  are all positive real 

numbers and R  is a bifurcation parameter (the Rayleigh 

number). Varying the values of the parameter R  will allow 

us to consider a one-parameter set of solutions. The physical 

meaning of R  lies in the temperature difference at the 

boundaries of the electrically conductive liquid layer. By 

changing the heating conditions at the boundaries of the 

liquid layer, i.e., value R , one can investigate various 

regimes of convective instability. When 

= 2, = 0.1, = 8 / 3, = 8.21, = 24.65,b c d e f  and = 58R , the 

system (1) depicts hyperchaotic behavior with two positive 

Lyapunov exponents in six Lyapunov exponents as 

1 2 3

4 5 6

= , = , = ,

= , = , = .

0.0988591 0.0109865 -0.544226

-1.00557 -1.15581 -1.77091

L L L

L L L
 

at initial conditions:  

1 2 3 4 5 6(0) = (0) = (0) = (0) = (0) = (0) =1.x x x x x x  

The sum of the Lyapunov exponents is negative 
6

1

= 4.36667 < 0i

i

L
=

− , indicating that the hyperchaotic 

system (1) is dissipative. For a hyperchaotic system (1), the 

Kaplan-York dimension (KYD) has the following forms:  
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where M  is the largest integer and 
1

=1 =1

> 0, < 0.
M M

i i

i i

L L
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The value of the Kaplan-York dimension turns out to be not 

an integer 1 2

3

= 2 2.20,
| |

KY

L L
D

L

+
+   but a fractional or fractal 

one. Consequently, this system behaves chaotically. Next, we 

introduce an additional variable U  to improve the chaotic 

behavior of system (1) by modifying the Lorentz equations 

included in the system of equations (1). As a result, we obtain 

a new system of 7D equations for nonlinear dynamics: 
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By integrating a memristor with a chaotic system (3), a novel 

8D chaotic system can be constructed. To facilitate this, we 

adopted the model of an “absolute memristor” or a 

magnetically controlled memristor (see, for example, [24]). 

The mathematical representation of the magnetically 

controlled memristor is expressed by the following equations 

[24]: 

 (4) 

Here U , I , and   are the input, output and state of the 

memristive device, respectively. In equations (4), ( )W   

represents a function of magnetic flux  , and   and   are 

constant coefficients chosen as [23] =1  and = 0.1 . The 

graph of the function for system (4) forms a smooth quadratic 

nonlinear characteristic curve that passes through the origin. 

The Simulink circuit for an absolute memristor is depicted in 

Figure 1.  

                                  
Figure 1: Simulink circuit for modeling an absolute memristor.   

 

The sinusoidal AC voltage source U  is the input of the 

memristor and can be expressed as: = sin(2 )U A ft , where 

A  and f  are the amplitude and frequency of the external 

signal, respectively. Figure 2 illustrates the simulation 

outcomes of the memristor circuit (refer to Figure 1). Under 

sinusoidal excitation with alternating current, the current-

voltage characteristic of the memristor forms a closed curve - 

a hysteresis loop passing through the origin of coordinates. 

As the frequency f  rises, the area of the hysteresis loop 

gradually diminishes, and conversely, with an increase in 

amplitude A , it expands. This behavior aligns with the 

fundamental properties of memristors. 

Applying expressions (4) to the system of 7D nonlinear 

dynamics equations (3), we obtained new memristor-based 

8D nonlinear dynamics equations in the following form:  
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Figure 2: Simulation of the hysteresis loop of an absolute memristor: a) 

different values of frequency f ; b) different amplitude value A . 

 

or in the form of state variables  in Eqs. (6), we write as 
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The dynamic behavior of the new systems (3) and (6) 

presented in this paper is studied in the subsequent sections. 

III. ANALYSIS OF THE STABILITY AND DYNAMICS 

OF A 7D CHAOTIC SYSTEM 

In this section, we will describe both qualitative and 

numerical analyses of the newly introduced nonlinear 

dynamic system of equations (3). 
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A. Bifurcation diagrams, Lyapunov exponents and 

Kaplan-Yorke dimension 

When examining nonlinear dynamic systems, a common 

practice involves utilizing a graphical representation, such as 

a bifurcation diagram, to depict alterations in the state 

variables of the system. This diagram provides essential 

information about the qualitative shifts in the system's 

behavior as certain control parameters vary. Following a 

similar approach as in reference [20], we designated the 

parameter R  in the system (3) as a controlling factor. In 

Figure 3, bifurcation diagrams are presented for the 

1 2 4 5 6 7, , , , ,x x x x x x  components of system (3) with respect to 

variations in R  within the interval [0.600]R . These 

diagrams enable the identification of stable regions 

(represented by individual points) or regular behaviors  

within the system. The diagrams can also reveal areas where 

the system demonstrates periodic or quasi-periodic behavior. 

Distinct branches on the diagram may correspond to different 

periodic orbits, signifying diverse oscillation patterns. In 

addition, on bifurcation diagrams, one can observe period-

doubling bifurcations when the parameter R  changes. These 

bifurcations constitute a sequence wherein  

 
Figure 3: Bifurcation diagrams for 

1 2 4 5 6 7, , , , ,x x x x x x  components of the 

system (3) depending on changes in the parameter R . 

 

the system transitions from one period to period doubling 

(doubling of periods), and this process may persist, 

eventually leading to chaotic behavior. By setting the 

parameter = 68R , we generated a bifurcation diagram while 

varying the parameter d . As depicted in Figure 4, it is evident 

that when = 8 / 3 2.667d   (matching the value in the 

Lorentz system [4]), chaos is observed in system (3). 

An essential criterion for characterizing the chaotic 

behavior of a nonlinear dynamic system is the Lyapunov 

spectrum. Lyapunov exponents are employed to determine 

the rate of convergence or divergence between trajectories in 

the phase space. The existence of at least one positive value 

in the Lyapunov spectrum indicates the presence of chaotic 

vibrations in the system. The number of Lyapunov exponents 

corresponds to the dimension of the phase space of the 

nonlinear dynamic system. For our system (4), there are seven 

such indicators. Following the methodology of Sandri [25] 

and Binouse et al. [26], we computed the maximum 

Lyapunov exponent for (3) at = 68R : = 0.157485maxL . 

Subsequently, employing Gram-Schmidt orthogonalization, 

all Lyapunov exponents are precisely determined as follows:  

1 2 3

4 5

6 7

= , = , = ,

= , = ,

= , = .

0.063631 0.0465695 -0.507604

-1.04418 -1.13397

-1.78984 -5.10153

L L L

L L

L L

 (7) 

It is observed that the Lyapunov spectrum contains two 

positive Lyapunov exponents, indicating hyperchaotic 

behavior in the system (3). Additionally, as 

1 2 3 4 5 6 7 = 9.4669235 < 0L L L L L L L+ + + + + + − , the new 

hyperchaotic system (3) is characterized as dissipative. The 

dimension of the Kaplan-Yorke dimension of the new 

hyperchaotic system (3) is computed using the formula (2) as 

follows: 

1 2

3

= 2 2.217.
| |

KY

L L
D

L

+
+   (8) 

Hence, we have determined the Kaplan-Yorke dimension (8) 

to be slightly higher than that of the 6D chaotic system (1), 

indicating a greater complexity in the dynamics of the system 

(3). Figure 5 illustrates the dynamics of the Lyapunov 

exponents of the hyperchaotic system (3). 

 
Figure 4: Bifurcation diagrams for the 

3x  component of the system (3) 

depending on changes in the parameters d  and R . 

   

 
 

Figure 5: The convergence plot of the Lyapunov spectrum for the system 

(3). 

B. Stability analysis 

Some of the dynamical properties of the system (3 are 

explored, as described below.   

Symmetry. Because the transformation  

1 2 3 4 5 6 7 1 2 3 4 5 6 7( , , , , , , ) ( , , , , , , )x x x x x x x x x x x x x x→ − − − − − −  
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does not change the system, it is symmetric about the 
3x -axis. 

Dissipativity: The divergence of the system can be calculated 

as 
7

=1

div = = 9.466 < 0.i

i i

x

x


 −


  

Equilibrium points and stability. Setting the left sides of 

equations (3) to zero, we identified three equilibrium points: 

0

1,2

(0,0,0,0,0,0,0),

( 11.11, 0.234,0.98, 1.11, 30.336, 30.426, 0.458).

E

E    
 

Linearizing equation (3) around this set of equilibria, we 

obtained the Jacobian matrix of the system as follows: 

3 1

12
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0.1 0 0 0 00.1 0.2667
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x x

xx

J E

− − − − 
 

− − − 
 −
 

= − 
 −
 
 − − −
 

− − 

 (9) 

The characteristic polynomial at the equilibrium point 0E  is 

written as  
7 6 5 4

3 2

( ) = 9.4667 24.1846 4.2531

92.5309 133.8202 71.2131 11.1785

P     
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+ + − −

− − −− −
 (10) 

Eigenvalues are obtained as  

1 2 3 4= 5.0299, =1.9954, = 3.0470, = 1.1497 0.5928,i   − − − +

5 6 7= 1.1497 0.5928, = 0.8190, = 0.2667.i  − − − −  

From this, we saw that not all real parts of the eigenvalues are 

negative. Then, according to the Routh-Hurwitz stability 

condition, the equilibrium point 
0E  is unstable. At the 

equilibrium point 
1,2E , the characteristic polynomial has the 

following form: 

 (11) 

The eigenvalues are: 

1 2

3 4

5 6

7

= 5.0966, = 1.1106 1.0009,

= 1.1106 1.0009, = 1.6514,

= 0.5828, = 0.0428 1.4244,

= 0.0428 1.4244.

i

i

i

i

 
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 



− − +

− − −

− +

−

 

As can be seen from equation (11), all coefficients have a 

positive sign; therefore, according to the Routh-Hurwitz 

condition, the equilibrium points 
1,2E  are stable. 

 

IV. ANALYSIS OF A NEW MEMRISTOR-BASED 

HYPERCHAOTIC SYSTEM 

In this section, a numerical analysis is presented for a novel 

8D hyperchaotic memristor-based system (6) derived from 

the 7D hyperchaotic system (3).   

A. Bifurcation diagrams, Lyapunov exponents and 

Kaplan-Yorke dimension 

By varying the parameter R  within the interval [0,600]R

, we constructed bifurcation diagrams for the components 

1 2 4 5 6 7, , , , ,x x x x x x  of the nonlinear dynamic system (6) 

incorporating a memristor. These diagrams are illustrated in 

Figure 6. Upon comparison with the diagrams in Figure 3, it 

becomes evident that the chaotic behavior is most 

pronounced in the 8D memristor system. This is further 

emphasized in Figure 7, where a bifurcation diagram for the 

3x  component is plotted for a fixed parameter = 68R , 

showcasing developed chaos at = 8 / 3 2.667d  . 

Employing a methodology akin to the previous section, we 

computed the maximum Lyapunov exponent for (6) at 

= 68R : = 0.18397maxL . The system (6) is a hyperchaotic 

system with three positive Lyapunov exponents. All 

Lyapunov exponents are precisely determined as follows:  

1 2 3

4 5 6

7 8

= , = , 0,

= , = , = ,

= , =

0.041391 0.0317815

-0.408706 -1.11737 -1.1493

-1.7399 -5.08168.

L L L

L L L

L L



 (12) 

Figure 8 shows the dynamics of the hyperchaotic system's 

Lyapunov exponents (6). Furthermore, because 

1 2 3 4 5 6 7 8 = 9.4237835L L L L L L L L+ + + + + + + − , the new 

hyperchaotic system (6) is dissipative. Using definition (2) 

and expressions (12), we calculated the Kaplan-York 

dimension:  

1 2 3

4

= 3 3.179
| |

KY

L L L
D

L

+ +
+   (13) 

 
Figure 6: Bifurcation diagrams for 

1 2 4 5 6 7, , , , ,x x x x x x  components of the 

system (6) depending on changes in the parameter R . 

 

 
Figure 7: Bifurcation diagrams for the 

3x  component of the system (6) 

depending on changes in the parameters d  and R . 

7 6 5 4

3 2

( ) = 9.4667 32.0832 65.4815

97.0256 106.6226 77.2612 22.2727
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Figure 8: The convergence plot of the Lyapunov spectrum for the system 

(6). 

 

Hence, we have established that the memristive system (6) 

possesses a higher Kaplan-York dimension compared to 

system (3). This implies that system (7) is more chaotic, 

complex, and potentially exhibits a more intricate fractal 

structure in its dynamics. 

B. Stability analysis 

     

    The dynamic properties of system (6) are analyzed as 

shown below.  

Symmetry. Unlike system (3), memristive system (6) is not 

invariant under the transformation:  

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

( , , , , , , , )

( , , , , , , , ).

x x x x x x x x

x x x x x x x x

→
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Dissipativity The divergence of system (6) being less than 

zero indicates that the system is dissipative, suggesting the 

possibility of chaotic attractors within the system. 

Equilibrium points and stability. By setting the right-hand 

sides of the equations in system (6) to zero, we can determine 

equilibrium points, which are located on a line: 

0 8(0,0,0,0,0,0,0, )E x . Linearizing Eqs. (6) around this set of 

equilibria, we obtained the Jacobian matrix of the system as 

follows:  

8 7
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−
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The characteristic polynomial of the Jacobian matrix can be 

expressed as follows:  
8 7 6 5

3 4 2

3 2 5

8 8 8 8

4

8

( ) = 9.4667 24.1846 4.2531

133.8202 92.5309 71.2131 11.1785

0.032 0.4 0.2053 0.1

0.3266

P

x x x x

x

    

   

   



+ + − −

− − − − +

+ + + + +

+

 (14) 

According to the Routh-Hurwitz criterion, the equilibrium 

points 
0 8(0,0,0,0,0,0,0, )E x  are unstable.  

 

V. COMPUTER MODELLING AND ELECTRONIC 

CIRCUIT DESIGN 

In this section, computer modeling is implemented for the 

new 7D and 8D hyperchaotic systems of nonlinear dynamics. 

Utilizing the visual design environments Simulink and 

Labview, chaotic oscillation generators were developed for 

the 7D system (3) and the 8D memristive system (6). 

Additionally, in the Multisim environment, the circuit 

realization of both the 7D chaotic system and the 8D 

memristor chaotic system has been completed.  

  

A. MATLAB-Simulink model 

   Phase portraits of chaotic attractors for the systems of 

equations (3) and (6) were obtained through numerical 

simulation in MATLAB -Simulink. The MATLAB-Simulink 

model for chaotic oscillation generators in the systems (3) and 

(6) comprises interconnected blocks for signal amplification, 

summation, subtraction, multiplication, integration, and 

recording devices. The gain blocks contain information about 

the values of fixed parameters in systems (3) and (6). The 

Constant block holds data on the value of the Rayleigh 

parameter R . For our simulation in MATLAB-Simulink, we 

set the parameter value = 68R . In Figure 9, a MATLAB-

Simulink model diagram for the 7D hyperchaotic system (3) 

is presented. On the other hand, Figure 10 displays a 

MATLAB-Simulink model diagram for the 8D hyperchaotic 

memristor system (7). The results of modeling the systems  

 
Figure 9:  The Matlab-Simulink model for Eq. (3). 

1 

   
Figure 10: The MATLAB-Simulink model for Eq. (6).2 
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Figure 11: The phase portraits in the planes a) 

2 5x x , b) 
2 6x x , c) 

3 1x x , d) 

3 4x x , e) 
3 5x x , f) 

3 6x x , g) 
3 2x x , h) 

7 2x x , i) 
1 2x x  for system (3). 

 

of equations (3) and (6) with the parameter = 68R  are 

depicted in Figures 11 and 12 respectively. These phase 

portraits reveal the complexity of trajectories characteristic of 

strange attractors. 

Note that the direct implementation of (3) and (6) using 

electronic circuits presents a certain difficulty. As seen in 

Figures 11 and 12, the dynamic variables 
1 5 6 7 8, , , ,x x x x x  

occupy a wide dynamic range with values beyond the 

reasonable limits of the power supply. The operating voltage 

range of op-amps in practical electronic circuits is typically -

15 V to +15 V. 

 
Figure 12: The phase portraits in the planes a) 

2 5x x , b) 
2 6x x , c) 

3 1x x , d) 

3 4x x , e) 
3 5x x , f) 

3 6x x , g) 
3 2x x , h) 

7 2x x , i) 
1 2x x  for system (6). 

 

 
Figure 13: Block diagram implementing a hyperchaotic system (15) in 

LabVIEW. 

This problem can be addressed by transforming the variables 

in the dynamical systems (3) and (6). In our case, we need to 

change the scale of the following variables:  

1 1 5 5 6 6 7 6 8 8=10 , = 20 , =10 , = 20 , = 20x X x X x X x X x X . The 

remaining variables are simply redesignated as 

2 2 3 3 4 4= , = , =x X x X x X . With this scaling, the equations 

(3) are transformed as follows:   

1

1 2 4 5 7

2

2 1 1 3

3

3 1 2

4

4 1

5

5 1 6

6

6 4 5

7

2 7

= 6.8 0.2 0.2 2

= 0.1

= 0.267

=

= 4.11

= 2.465 0.2

= 0.5 5.1

dX
X X X X X

dt

dX
X X X X

dt

dX
X X X

dt

dX
X X

dt

dX
X X X

dt

dX
X X X

dt

dX
X X

dt


− + − − −




− + −


 − +




− +



− + +



− − −

 − −


 (15) 

In a similar way, the memristor-based 8D hyperchaotic 

system (6) is transformed into the following form:  

2

2 1 1 3

3

3 1 2

4

4 1

5

5 1 6

6

6 4 5

7

2 7

1
1 2 4 5 7 7 8

8
7

= 0.1

= 0.267

=

= 4.11

= 2.465 0.2

= 0.5 5.1

= 6.8 0.2 0.2 2 4

=

dX
X X X X

dt

dX
X X X

dt

dX
X X

dt

dX
X X X

dt

dX
X X X

dt

dX
X X

dt

dX
X X X X X X X

dt

dX
X

dt

− + −

− +

− +

− + +

− − −

− −


− + − − − +























         (16)    

It is important to note that the systems (3) and (15), as well as 

(6) and (16), are equivalent, since the linear transformation 

does not change the physical properties of nonlinear systems. 

 
Figure 14: Phase portraits of the rescaled system (15) in various planes 

obtained in LabVIEW. 

B. LabVIEW model 

The modeling of nonlinear dynamic systems using various 

software environments is of significant interest. We 

employed the LabVIEW software environment to simulate 
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the behavior of a chaotic system. A visual platform has been 

created for the development of algorithms in LabVIEW, 

which is currently widely used in engineering applications 

[27]. Figure 13 depicts a block diagram of a 7D hyperchaotic 

system, described by transformed equations (15). Unlike 

works [10],[12], this model was developed using the Control 

& Simulation and Formula Node toolkits. The Formula Node 

is utilized to formulate the right-hand sides of the equations 

in system (15). Using a Formula Node instead of function 

blocks results in a simpler block diagram. Integration of time 

derivatives is performed using Integrator blocks from the 

Continuous palette. 

Figure 14 shows a software interface that illustrates chaotic 

solutions of transformed equations (15) in a LabVIEW 

model. The modeling result is displayed as phase portraits in 

planes:  

2 5 2 6 3 1 3 4 3 5 3 6 3 2 7 2 1 2, , , , , , , ,X X X X X X X X X X X X X X X X X X   

for initial conditions:  

1 2 3 4

5 6 7

(0) = (0) = (0) = (0) =

(0) = (0) = 1, = 0.

X X X X

X X X=
 

It can be seen that the range of values of dynamic variables 

has decreased significantly compared to the values in Figure 

11. This reduction allows the implementation of electronic 

circuits using operational amplifiers operating in a normal 

voltage range. 

 

 
Figure 15: Block diagram implementing a hyperchaotic system (16) in 

LabVIEW. 

 

 
 

Figure 16: Phase portraits of the rescaled system (16) in various planes 

obtained in LabVIEW. 

  

Similarly, using Control & Simulation and Formula Node 

toolkits, we constructed a block diagram of an 8D memristor-

based hyperchaotic system, described by transformed 

equations (16) (see Figure 15). In Figure 16, a software 

interface is presented that displays the properties of 

information modeling in the form of phase portraits in the 

planes 

2 5 2 6 3 1 3 4 3 5 3 6 3 2 7 2 1 2, , , , , , , ,X X X X X X X X X X X X X X X X X X   

for initial conditions: 

1 2 3 4

5 6 7 8

(0) = (0) = (0) = (0) =

(0) = (0) = 1, = = 0.

X X X X

X X X X=
 

 By comparing the phase portraits in Figures 11-12 and 14,16, 

it is evident that the results of modeling chaotic systems (3) 

and (7) in MATLAB-Simulink and LabVIEW are consistent. 

C. Implementation of new electronic circuits for 7D and 

memristor-based 8D chaotic systems 

To implement the dynamic system of equations (15) in a 

circuit, seven operational amplifiers are employed to perform 

the signal integration function. The dynamic system variables 

(15) are represented by electrical signals corresponding to the 

instantaneous voltage values on capacitors 

1 2 3 4 5 6 7, , , , , ,C C C C C C C , denoted as 

1 2 3 4 5 6 7( ), ( ), ( ), ( ), ( ), ( ), ( )U U U U U U U       .  

Applying Kirchhoff's laws to electrical circuits, we obtain an 

electrical analog of the system (15): 

1
1 2 4 5 7

2
2 1 1 3

3
3 1 2

4
4 1

5
5 1 6

6
6

10k 10k 10k 10k 10k

10k 1.47k 50k 50k 5k

10k 10k 10k

100k 10k 1k 10

10k 10k

37.5k 1k 10

10k 10k

10k 10k

10k 10k 10k

10k 2.43k 10k

10k 10k

10k 4.

d X
X X X X X

dt

d X
X X X X

dt

d X
X X X

dt

d X
X X

dt

d X
X X X

dt

d X
X

dt

= − + − − −

= − + −


= − +


= − +

= − + +

= − − 4 5

7
2 7

10k

056k 50k

10k 10k

20k 1.96k

X X

d X
X X

dt























−

= − −

 (17) 

where the output voltages are 1 2 3 4 5 6 7, , , , , ,X X X X X X X . 

The Multisim software environment is employed to 

devise a circuit capable of generating chaotic oscillations 

within the system outlined by equations (17). In this 

procedure, operational amplifiers serve as integrators. The 

circuit is crafted utilizing conventional methods for 

integrating, summing, and inverting signals. In Figure 17, the 

analog circuit depicting system (19) is showcased, wherein 

the initial three equations are efficiently implemented within 

a subsystem denoted as SC1. Figure 18 delineates the 

electronic circuit of the SC1 subsystem (akin to Lorentz 

equations). The circuits illustrated in Figures 17 and 18 are 

based on operational amplifiers TL084ACN and analog 

multipliers A1 and A2. The signal outputs correspond to the 

labeled terminals in the circuit diagram. By interfacing a dual-

channel oscilloscope with different outputs, diverse phase 

portraits can be derived within the Multisim environment, as 

exemplified in Figure 19. The results obtained from Multisim 

outputs closely align with those obtained from MATLAB-

Simulink in Figure 11, as well as LabVIEW in Figure 14. 
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Figure 17: Electronic circuit of the generator of chaotic oscillations based 

on the system of equations (19). 

 
Figure 18: Electronic circuit of the subsystem SC1. 

 

 
Figure 19: Chaotic phase trajectories displayed in Multisim oscilloscopes: a) 

2 5X X  plane with scales 200 mV/div and 2 V/div, b) 3 1X X  plane with 

scales 200 mV/div and 1 V/div, c) 3 5X X  plane with scales 200 mV/div 

and 2 V/div, d) 7 2X X  plane with scales 20 mV/div and 200 mV/div.    

 

Utilizing the same approach, we derived the electrical 

circuit equation corresponding to the dynamic system defined 

by equations (16): 

1
1 2 4 5 7 7 8

2
2 1 1 3

3
3 1 2

4
4 1

5
5 1 6

6

10k 10k 10k 10k 10k 10

10k 1.47k 50k 50k 5k 10 0.250k

10k 10k 10k

100k 10k 1k 10

10k 10k

37.5k 1k 10

10k 10k

10k 10k

10k 10k 10k

10k 2.43k 10k

d X
X X X X X X X

dt

d X
X X X X

dt

d X
X X X

dt

d X
X X

dt

d X
X X X

dt

d X

dt

= − + − − − +


= − + −


= − +


= − +

= − + +

6 4 5

7
2 7

8
7

10k 10k 10k

10k 4.056k 50k

10k 10k

20k 1.96k
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X X X

d X
X X

dt

d X
X

dt



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

















= − − −

= − −

=


 (18) 

Figure 20 shows the electronic diagram of the above system 

of equations, built in the Multisim environment. In this 

configuration, the SC2 subsystem is employed for 

convenience, designed specifically for the first three and last 

equations of the above system of equations. Within the SC2 

subsystem, the electronic circuit of the memristor emulator is 

highlighted with a thick line. The electronic circuit of the SC2 

subsystem is detailed in Figure 21. Observing Figure 20 and 

Figure 21, it becomes apparent that the circuits are also 

constructed based on operational amplifiers TL084ACN and 

analog multipliers A1, A2, and A3 (typically, multipliers of 

the AD633 series are commonly used in practice). The 

terminals IO1, IO2, IO3, IO4, IO5, IO6, IO7 on the diagram 

(Figure 20) correspond to signal outputs 

1 2 3 4 5 6 7, , , , , ,X X X X X X X . By connecting a two-channel 

oscilloscope to different terminals, various phase portraits 

can be obtained in the Multisim environment, as illustrated in 

Figure 22. Notably, the simulation results in Multisim 

demonstrate a commendable agreement with the simulation 

results in MATLAB-Simulink and LabView, as presented in 

Figure 12 and Figure 16.  

 

Figure 20: Electronic circuit of the generator of chaotic oscillations based 

on the system of equations (20). 
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Figure 21: The electronic circuit of the SC2 subsystem containing the 
memristor emulator circuit. 

  
Figure 22: Chaotic phase trajectories of a memristor electronic circuit 

displayed in Multisim oscilloscopes: a) 2 5X X  plane with scales 200 

mV/div and 2 V/div, b) 3 1X X  plane with scales 200 mV/div and 1 V/div, 

c) 3 5X X  plane with scales 200 mV/div and 2 V/div, d) 7 2X X  plane with 

scales 20 mV/div and 200 mV/div.   

VI. CONCLUSION 

This study introduces two novel hyperchaotic systems with 

dimensions of seven and eight, respectively. Within the 7D 

system, three equilibrium points exist, with one being 

unstable and the others stable. Notably, the new 7D system 

demonstrates heightened chaotic behavior compared to the 

6D system, a conclusion supported by the Kaplan-York 

dimension. In an effort to augment chaos, a “memristor” was 

incorporated into the equations governing the 7D nonlinear 

dynamics, resulting in the derivation of a new eight-

dimensional (8D) nonlinear system of equations. 

Remarkably, the Kaplan-York dimension for the 8D system 

proved to be significantly higher than that of the 7D system, 

indicating an amplified level of chaos. The newly developed 

8D hyperchaotic memristive system exhibits an infinite 

number of equilibrium points are present, all situated along a 

line. Bifurcation diagrams for both the 7D and 8D systems 

illustrate various modes of behavior, encompassing periodic, 

quasiperiodic, and chaotic patterns. To study the dynamics of 

these new systems, comprehensive numerical simulations 

were conducted utilizing MATLAB-Simulink and LabView 

models. The simulations unveiled intricate chaotic 

oscillations in the novel systems, with the memristive system 

displaying particularly complex behavior, evident in the 

phase portraits. Thus, the new 8D hyperchaotic system may 

generate multiple attractors with high fractal dimensions. 

Furthermore, electronic circuits for generating chaos in both 

the 7D and 8D systems were conceived using operational 

amplifiers. These circuits were subsequently designed and 

tested within the Multisim environment. The future direction 

of this work entails hardware implementations of the newly 

developed systems, coupled with their practical applications. 
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